Edits to mash evaluation functions to improve plotting
This commit is contained in:
@@ -1,5 +1,6 @@
|
||||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/wrapper.R
|
||||
% Please edit documentation in R/dive_effects2mash.R, R/dive_phe2effects.R,
|
||||
% R/wrapper.R
|
||||
\name{dive_phe2mash}
|
||||
\alias{dive_phe2mash}
|
||||
\title{Wrapper to run mash given a phenotype data frame}
|
||||
@@ -14,7 +15,47 @@ dive_phe2mash(
|
||||
min.phe = 200,
|
||||
save.plots = TRUE,
|
||||
thr.r2 = 0.2,
|
||||
thr.m = c("sum", "max"),
|
||||
thr.m = c("max", "sum"),
|
||||
num.strong = 1000,
|
||||
num.random = NA,
|
||||
scale.phe = TRUE,
|
||||
roll.size = 50,
|
||||
U.ed = NA,
|
||||
U.hyp = NA,
|
||||
verbose = TRUE
|
||||
)
|
||||
|
||||
dive_phe2mash(
|
||||
df,
|
||||
snp,
|
||||
type = "linear",
|
||||
svd = NULL,
|
||||
suffix = "",
|
||||
outputdir = ".",
|
||||
min.phe = 200,
|
||||
save.plots = TRUE,
|
||||
thr.r2 = 0.2,
|
||||
thr.m = c("max", "sum"),
|
||||
num.strong = 1000,
|
||||
num.random = NA,
|
||||
scale.phe = TRUE,
|
||||
roll.size = 50,
|
||||
U.ed = NA,
|
||||
U.hyp = NA,
|
||||
verbose = TRUE
|
||||
)
|
||||
|
||||
dive_phe2mash(
|
||||
df,
|
||||
snp,
|
||||
type = "linear",
|
||||
svd = NULL,
|
||||
suffix = "",
|
||||
outputdir = ".",
|
||||
min.phe = 200,
|
||||
save.plots = TRUE,
|
||||
thr.r2 = 0.2,
|
||||
thr.m = c("max", "sum"),
|
||||
num.strong = 1000,
|
||||
num.random = NA,
|
||||
scale.phe = TRUE,
|
||||
@@ -76,12 +117,38 @@ matrices must have dimensions that match the number of phenotypes where
|
||||
univariate GWAS ran successfully.}
|
||||
|
||||
\item{verbose}{Output some information on the iterations? Default is \code{TRUE}.}
|
||||
|
||||
\item{effects}{fbm created using 'dive_phe2effects' or 'dive_phe2mash'.
|
||||
Saved under the name "gwas_effects_{suffix}.rds" and can be loaded into
|
||||
R using the bigstatsr function "big_attach".}
|
||||
}
|
||||
\value{
|
||||
A mash object made up of all phenotypes where univariate GWAS ran
|
||||
successfully.
|
||||
|
||||
A mash object made up of all phenotypes where univariate GWAS ran
|
||||
successfully.
|
||||
|
||||
A mash object made up of all phenotypes where univariate GWAS ran
|
||||
successfully.
|
||||
}
|
||||
\description{
|
||||
Though step-by-step GWAS, preparation of mash inputs, and mash
|
||||
allows you the most flexibility and opportunities to check your results
|
||||
for errors, once those sanity checks are complete, this function allows
|
||||
you to go from a phenotype data.frame of a few phenotypes you want to
|
||||
compare to a mash result. Some exception handling has been built into
|
||||
this function, but the user should stay cautious and skeptical of any
|
||||
results that seem 'too good to be true'.
|
||||
|
||||
This function allows
|
||||
you to go from a phenotype data.frame of a few phenotypes you want to
|
||||
compare to filebacked matrix of univariate GWAS effects, standard errors,
|
||||
and -log10pvalues. This output object can be used in "dive_effects2mash"
|
||||
function. Some exception handling has been built into
|
||||
this function, but the user should stay cautious and skeptical of any
|
||||
results that seem 'too good to be true'.
|
||||
|
||||
Though step-by-step GWAS, preparation of mash inputs, and mash
|
||||
allows you the most flexibility and opportunities to check your results
|
||||
for errors, once those sanity checks are complete, this function allows
|
||||
|
||||
Reference in New Issue
Block a user