Merge branch 'Dev_Vertex'

# Conflicts:
#	src/main/java/GraphModificationFunctions.java
#	src/main/java/GraphWithMapData.java
#	src/main/java/Simulator.java
#	src/main/java/Vertex.java
This commit is contained in:
eugenefischer
2022-09-25 18:33:26 -05:00
9 changed files with 264 additions and 150 deletions

View File

@@ -13,7 +13,7 @@ public class BiGpairSEQ {
private static boolean cacheCells = false;
private static boolean cachePlate = false;
private static boolean cacheGraph = false;
private static String priorityQueueHeapType = "FIBONACCI";
private static HeapType priorityQueueHeapType = HeapType.FIBONACCI;
private static boolean outputBinary = true;
private static boolean outputGraphML = false;
private static final String version = "version 2.0";
@@ -157,15 +157,15 @@ public class BiGpairSEQ {
}
public static String getPriorityQueueHeapType() {
return priorityQueueHeapType;
return priorityQueueHeapType.name();
}
public static void setPairingHeap() {
priorityQueueHeapType = "PAIRING";
priorityQueueHeapType = HeapType.PAIRING;
}
public static void setFibonacciHeap() {
priorityQueueHeapType = "FIBONACCI";
priorityQueueHeapType = HeapType.FIBONACCI;
}
public static boolean outputBinary() {return outputBinary;}

View File

@@ -13,8 +13,12 @@ public class CellSample {
List<Integer> numbersCDR3 = new ArrayList<>();
List<Integer> numbersCDR1 = new ArrayList<>();
Integer numDistCDR3s = 2 * numDistinctCells + 1;
//Assign consecutive integers for each CDR3. This ensures they are all unique.
IntStream.range(1, numDistCDR3s + 1).forEach(i -> numbersCDR3.add(i));
//After all CDR3s are assigned, start assigning consecutive integers to CDR1s
//There will usually be fewer integers in the CDR1 list, which will allow repeats below
IntStream.range(numDistCDR3s + 1, numDistCDR3s + 1 + (numDistCDR3s / cdr1Freq) + 1).forEach(i -> numbersCDR1.add(i));
//randomize the order of the numbers in the lists
Collections.shuffle(numbersCDR3);
Collections.shuffle(numbersCDR1);
@@ -22,11 +26,15 @@ public class CellSample {
//two CDR3s, and two CDR1s. First two values are CDR3s (alpha, beta), second two are CDR1s (alpha, beta)
List<Integer[]> distinctCells = new ArrayList<>();
for(int i = 0; i < numbersCDR3.size() - 1; i = i + 2){
//Go through entire CDR3 list once, make pairs of alphas and betas
Integer tmpCDR3a = numbersCDR3.get(i);
Integer tmpCDR3b = numbersCDR3.get(i+1);
//Go through (likely shorter) CDR1 list as many times as necessary, make pairs of alphas and betas
Integer tmpCDR1a = numbersCDR1.get(i % numbersCDR1.size());
Integer tmpCDR1b = numbersCDR1.get((i+1) % numbersCDR1.size());
//Make the array representing the cell
Integer[] tmp = {tmpCDR3a, tmpCDR3b, tmpCDR1a, tmpCDR1b};
//Add the cell to the list of distinct cells
distinctCells.add(tmp);
}
this.cells = distinctCells;

View File

@@ -2,23 +2,25 @@ import org.jgrapht.graph.DefaultWeightedEdge;
import org.jgrapht.graph.SimpleWeightedGraph;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public interface GraphModificationFunctions {
//remove over- and under-weight edges
static List<Integer[]> filterByOverlapThresholds(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
//remove over- and under-weight edges, return removed edges
static Map<Vertex[], Integer> filterByOverlapThresholds(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
int low, int high, boolean saveEdges) {
List<Integer[]> removedEdges = new ArrayList<>();
Map<Vertex[], Integer> removedEdges = new HashMap<>();
//List<Integer[]> removedEdges = new ArrayList<>();
for (DefaultWeightedEdge e : graph.edgeSet()) {
if ((graph.getEdgeWeight(e) > high) || (graph.getEdgeWeight(e) < low)) {
if(saveEdges) {
Integer source = graph.getEdgeSource(e);
Integer target = graph.getEdgeTarget(e);
Vertex source = graph.getEdgeSource(e);
Vertex target = graph.getEdgeTarget(e);
Integer weight = (int) graph.getEdgeWeight(e);
Integer[] edge = {source, target, weight};
removedEdges.add(edge);
Vertex[] edge = {source, target};
removedEdges.put(edge, weight);
}
else {
graph.setEdgeWeight(e, 0.0);
@@ -26,31 +28,27 @@ public interface GraphModificationFunctions {
}
}
if(saveEdges) {
for (Integer[] edge : removedEdges) {
for (Vertex[] edge : removedEdges.keySet()) {
graph.removeEdge(edge[0], edge[1]);
}
}
return removedEdges;
}
//Remove edges for pairs with large occupancy discrepancy
static List<Integer[]> filterByRelativeOccupancy(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
Map<Integer, Integer> alphaWellCounts,
Map<Integer, Integer> betaWellCounts,
Map<Integer, Integer> plateVtoAMap,
Map<Integer, Integer> plateVtoBMap,
//Remove edges for pairs with large occupancy discrepancy, return removed edges
static Map<Vertex[], Integer> filterByRelativeOccupancy(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
Integer maxOccupancyDifference, boolean saveEdges) {
List<Integer[]> removedEdges = new ArrayList<>();
Map<Vertex[], Integer> removedEdges = new HashMap<>();
for (DefaultWeightedEdge e : graph.edgeSet()) {
Integer alphaOcc = alphaWellCounts.get(plateVtoAMap.get(graph.getEdgeSource(e)));
Integer betaOcc = betaWellCounts.get(plateVtoBMap.get(graph.getEdgeTarget(e)));
Integer alphaOcc = graph.getEdgeSource(e).getOccupancy();
Integer betaOcc = graph.getEdgeTarget(e).getOccupancy();
if (Math.abs(alphaOcc - betaOcc) >= maxOccupancyDifference) {
if (saveEdges) {
Integer source = graph.getEdgeSource(e);
Integer target = graph.getEdgeTarget(e);
Vertex source = graph.getEdgeSource(e);
Vertex target = graph.getEdgeTarget(e);
Integer weight = (int) graph.getEdgeWeight(e);
Integer[] edge = {source, target, weight};
removedEdges.add(edge);
Vertex[] edge = {source, target};
removedEdges.put(edge, weight);
}
else {
graph.setEdgeWeight(e, 0.0);
@@ -58,34 +56,30 @@ public interface GraphModificationFunctions {
}
}
if(saveEdges) {
for (Integer[] edge : removedEdges) {
for (Vertex[] edge : removedEdges.keySet()) {
graph.removeEdge(edge[0], edge[1]);
}
}
return removedEdges;
}
//Remove edges for pairs where overlap size is significantly lower than the well occupancy
static List<Integer[]> filterByOverlapPercent(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
Map<Integer, Integer> alphaWellCounts,
Map<Integer, Integer> betaWellCounts,
Map<Integer, Integer> plateVtoAMap,
Map<Integer, Integer> plateVtoBMap,
//Remove edges for pairs where overlap size is significantly lower than the well occupancy, return removed edges
static Map<Vertex[], Integer> filterByOverlapPercent(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
Integer minOverlapPercent,
boolean saveEdges) {
List<Integer[]> removedEdges = new ArrayList<>();
Map<Vertex[], Integer> removedEdges = new HashMap<>();
for (DefaultWeightedEdge e : graph.edgeSet()) {
Integer alphaOcc = alphaWellCounts.get(plateVtoAMap.get(graph.getEdgeSource(e)));
Integer betaOcc = betaWellCounts.get(plateVtoBMap.get(graph.getEdgeTarget(e)));
Integer alphaOcc = graph.getEdgeSource(e).getOccupancy();
Integer betaOcc = graph.getEdgeTarget(e).getOccupancy();
double weight = graph.getEdgeWeight(e);
double min = minOverlapPercent / 100.0;
if ((weight / alphaOcc < min) || (weight / betaOcc < min)) {
if(saveEdges) {
Integer source = graph.getEdgeSource(e);
Integer target = graph.getEdgeTarget(e);
if (saveEdges) {
Vertex source = graph.getEdgeSource(e);
Vertex target = graph.getEdgeTarget(e);
Integer intWeight = (int) graph.getEdgeWeight(e);
Integer[] edge = {source, target, intWeight};
removedEdges.add(edge);
Vertex[] edge = {source, target};
removedEdges.put(edge, intWeight);
}
else {
graph.setEdgeWeight(e, 0.0);
@@ -93,18 +87,18 @@ public interface GraphModificationFunctions {
}
}
if(saveEdges) {
for (Integer[] edge : removedEdges) {
for (Vertex[] edge : removedEdges.keySet()) {
graph.removeEdge(edge[0], edge[1]);
}
}
return removedEdges;
}
static void addRemovedEdges(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
List<Integer[]> removedEdges) {
for (Integer[] edge : removedEdges) {
static void addRemovedEdges(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
Map<Vertex[], Integer> removedEdges) {
for (Vertex[] edge : removedEdges.keySet()) {
DefaultWeightedEdge e = graph.addEdge(edge[0], edge[1]);
graph.setEdgeWeight(e, (double) edge[2]);
graph.setEdgeWeight(e, removedEdges.get(edge));
}
}

View File

@@ -6,6 +6,7 @@ import java.util.Map;
//Can't just write the graph, because I need the occupancy data too.
//Makes most sense to serialize object and write that to a file.
//Which means there's no reason to split map data and graph data up.
//Custom vertex class means a lot of the map data can now be encoded in the graph itself
public class GraphWithMapData implements java.io.Serializable {
private String sourceFilename;
@@ -15,32 +16,33 @@ public class GraphWithMapData implements java.io.Serializable {
private Integer alphaCount;
private Integer betaCount;
private final Map<Integer, Integer> distCellsMapAlphaKey;
private final Map<Integer, Integer> plateVtoAMap;
private final Map<Integer, Integer> plateVtoBMap;
private final Map<Integer, Integer> plateAtoVMap;
private final Map<Integer, Integer> plateBtoVMap;
private final Map<Integer, Integer> alphaWellCounts;
private final Map<Integer, Integer> betaWellCounts;
// private final Map<Integer, Integer> plateVtoAMap;
// private final Map<Integer, Integer> plateVtoBMap;
// private final Map<Integer, Integer> plateAtoVMap;
// private final Map<Integer, Integer> plateBtoVMap;
// private final Map<Integer, Integer> alphaWellCounts;
// private final Map<Integer, Integer> betaWellCounts;
private final Duration time;
public GraphWithMapData(SimpleWeightedGraph graph, Integer numWells, Integer[] wellConcentrations,
Integer alphaCount, Integer betaCount,
Map<Integer, Integer> distCellsMapAlphaKey, Map<Integer, Integer> plateVtoAMap,
Map<Integer,Integer> plateVtoBMap, Map<Integer, Integer> plateAtoVMap,
Map<Integer, Integer> plateBtoVMap, Map<Integer, Integer> alphaWellCounts,
Map<Integer, Integer> betaWellCounts, Duration time) {
Map<Integer, Integer> distCellsMapAlphaKey, Integer alphaCount, Integer betaCount, Duration time){
// Map<Integer, Integer> plateVtoAMap,
// Map<Integer,Integer> plateVtoBMap, Map<Integer, Integer> plateAtoVMap,
// Map<Integer, Integer> plateBtoVMap, Map<Integer, Integer> alphaWellCounts,
// Map<Integer, Integer> betaWellCounts,) {
this.graph = graph;
this.numWells = numWells;
this.wellPopulations = wellConcentrations;
this.alphaCount = alphaCount;
this.betaCount = betaCount;
this.distCellsMapAlphaKey = distCellsMapAlphaKey;
this.plateVtoAMap = plateVtoAMap;
this.plateVtoBMap = plateVtoBMap;
this.plateAtoVMap = plateAtoVMap;
this.plateBtoVMap = plateBtoVMap;
this.alphaWellCounts = alphaWellCounts;
this.betaWellCounts = betaWellCounts;
// this.plateVtoAMap = plateVtoAMap;
// this.plateVtoBMap = plateVtoBMap;
// this.plateAtoVMap = plateAtoVMap;
// this.plateBtoVMap = plateBtoVMap;
// this.alphaWellCounts = alphaWellCounts;
// this.betaWellCounts = betaWellCounts;
this.time = time;
}
@@ -68,29 +70,29 @@ public class GraphWithMapData implements java.io.Serializable {
return distCellsMapAlphaKey;
}
public Map<Integer, Integer> getPlateVtoAMap() {
return plateVtoAMap;
}
public Map<Integer, Integer> getPlateVtoBMap() {
return plateVtoBMap;
}
public Map<Integer, Integer> getPlateAtoVMap() {
return plateAtoVMap;
}
public Map<Integer, Integer> getPlateBtoVMap() {
return plateBtoVMap;
}
public Map<Integer, Integer> getAlphaWellCounts() {
return alphaWellCounts;
}
public Map<Integer, Integer> getBetaWellCounts() {
return betaWellCounts;
}
// public Map<Integer, Integer> getPlateVtoAMap() {
// return plateVtoAMap;
// }
//
// public Map<Integer, Integer> getPlateVtoBMap() {
// return plateVtoBMap;
// }
//
// public Map<Integer, Integer> getPlateAtoVMap() {
// return plateAtoVMap;
// }
//
// public Map<Integer, Integer> getPlateBtoVMap() {
// return plateBtoVMap;
// }
//
// public Map<Integer, Integer> getAlphaWellCounts() {
// return alphaWellCounts;
// }
//
// public Map<Integer, Integer> getBetaWellCounts() {
// return betaWellCounts;
// }
public Duration getTime() {
return time;

View File

@@ -0,0 +1,4 @@
public enum HeapType {
FIBONACCI,
PAIRING
}

View File

@@ -158,9 +158,9 @@ public class Plate {
//returns a map of the counts of the sequence at cell index sIndex, in a range of wells
public Map<Integer, Integer> assayWellsSequenceS(int start, int end, int... sIndices) {
Map<Integer,Integer> assay = new HashMap<>();
for(int pIndex: sIndices){
for(int sIndex: sIndices){
for(int i = start; i < end; i++){
countSequences(assay, wells.get(i), pIndex);
countSequences(assay, wells.get(i), sIndex);
}
}
return assay;
@@ -169,6 +169,7 @@ public class Plate {
private void countSequences(Map<Integer, Integer> wellMap, List<Integer[]> well, int... sIndices) {
for(Integer[] cell : well) {
for(int sIndex: sIndices){
//skip dropout sequences, which have value -1
if(cell[sIndex] != -1){
wellMap.merge(cell[sIndex], 1, (oldValue, newValue) -> oldValue + newValue);
}

View File

@@ -18,36 +18,36 @@ import static java.lang.Float.*;
//NOTE: "sequence" in method and variable names refers to a peptide sequence from a simulated T cell
public class Simulator implements GraphModificationFunctions {
private static final int cdr3AlphaIndex = 0;
private static final int cdr3BetaIndex = 1;
private static final int cdr1AlphaIndex = 2;
private static final int cdr1BetaIndex = 3;
//Make the graph needed for matching CDR3s
//Make the graph needed for matching sequences.
//sourceVertexIndices and targetVertexIndices are indices within the cell to use as for the two sets of vertices
//in the bipartite graph. "Source" and "target" are JGraphT terms for the two vertices an edge touches,
//even if not directed.
public static GraphWithMapData makeGraph(CellSample cellSample, Plate samplePlate, boolean verbose) {
Instant start = Instant.now();
List<Integer[]> distinctCells = cellSample.getCells();
int[] alphaIndex = {cdr3AlphaIndex};
int[] betaIndex = {cdr3BetaIndex};
int[] alphaIndices = {SequenceType.CDR3_ALPHA.ordinal()};
int[] betaIndices = {SequenceType.CDR3_BETA.ordinal()};
int numWells = samplePlate.getSize();
if(verbose){System.out.println("Making cell maps");}
//HashMap keyed to Alphas, values Betas
Map<Integer, Integer> distCellsMapAlphaKey = makeSequenceToSequenceMap(distinctCells, cdr3AlphaIndex, cdr3BetaIndex);
Map<Integer, Integer> distCellsMapAlphaKey = makeSequenceToSequenceMap(distinctCells, 0, 1);
if(verbose){System.out.println("Cell maps made");}
if(verbose){System.out.println("Making well maps");}
Map<Integer, Integer> allAlphas = samplePlate.assayWellsSequenceS(alphaIndex);
Map<Integer, Integer> allBetas = samplePlate.assayWellsSequenceS(betaIndex);
Map<Integer, Integer> allAlphas = samplePlate.assayWellsSequenceS(alphaIndices);
Map<Integer, Integer> allBetas = samplePlate.assayWellsSequenceS(betaIndices);
int alphaCount = allAlphas.size();
if(verbose){System.out.println("All alphas count: " + alphaCount);}
int betaCount = allBetas.size();
if(verbose){System.out.println("All betas count: " + betaCount);}
if(verbose){System.out.println("Well maps made");}
//ideally we wouldn't do any graph pre-filtering. But sequences present in all wells add a huge number of edges to the graph and don't carry any signal value
if(verbose){System.out.println("Removing sequences present in all wells.");}
filterByOccupancyThresholds(allAlphas, 1, numWells - 1);
filterByOccupancyThresholds(allBetas, 1, numWells - 1);
@@ -80,29 +80,46 @@ public class Simulator implements GraphModificationFunctions {
//(technically this is only 1/4 of an adjacency matrix, but that's all you need
//for a bipartite graph, and all the SimpleWeightedBipartiteGraphMatrixGenerator class expects.)
if(verbose){System.out.println("Creating adjacency matrix");}
//Count how many wells each alpha appears in
//Count how many wells each alpha sequence appears in
Map<Integer, Integer> alphaWellCounts = new HashMap<>();
//count how many wells each beta appears in
//count how many wells each beta sequence appears in
Map<Integer, Integer> betaWellCounts = new HashMap<>();
//the adjacency matrix to be used by the graph generator
double[][] weights = new double[plateVtoAMap.size()][plateVtoBMap.size()];
countSequencesAndFillMatrix(samplePlate, allAlphas, allBetas, plateAtoVMap,
plateBtoVMap, alphaIndex, betaIndex, alphaWellCounts, betaWellCounts, weights);
plateBtoVMap, alphaIndices, betaIndices, alphaWellCounts, betaWellCounts, weights);
if(verbose){System.out.println("Matrix created");}
//create bipartite graph
if(verbose){System.out.println("Creating graph");}
//the graph object
SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph =
SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph =
new SimpleWeightedGraph<>(DefaultWeightedEdge.class);
//the graph generator
SimpleWeightedBipartiteGraphMatrixGenerator graphGenerator = new SimpleWeightedBipartiteGraphMatrixGenerator();
//the list of alpha vertices
List<Integer> alphaVertices = new ArrayList<>(plateVtoAMap.keySet()); //This will work because LinkedHashMap preserves order of entry
//List<Integer> alphaVertices = new ArrayList<>(plateVtoAMap.keySet()); //This will work because LinkedHashMap preserves order of entry
List<Vertex> alphaVertices = new ArrayList<>();
//start with map of all alphas mapped to vertex values, get occupancy from the alphaWellCounts map
for (Integer seq : plateAtoVMap.keySet()) {
Vertex alphaVertex = new Vertex(SequenceType.CDR3_ALPHA, seq, alphaWellCounts.get(seq), plateAtoVMap.get(seq));
alphaVertices.add(alphaVertex);
}
//Sort to make sure the order of vertices in list matches the order of the adjacency matrix
Collections.sort(alphaVertices);
//Add ordered list of vertices to the graph
graphGenerator.first(alphaVertices);
//the list of beta vertices
List<Integer> betaVertices = new ArrayList<>(plateVtoBMap.keySet());
graphGenerator.second(betaVertices); //This will work because LinkedHashMap preserves order of entry
//List<Integer> betaVertices = new ArrayList<>(plateVtoBMap.keySet());//This will work because LinkedHashMap preserves order of entry
List<Vertex> betaVertices = new ArrayList<>();
for (Integer seq : plateBtoVMap.keySet()) {
Vertex betaVertex = new Vertex(SequenceType.CDR3_BETA, seq, betaWellCounts.get(seq), plateBtoVMap.get(seq));
betaVertices.add(betaVertex);
}
//Sort to make sure the order of vertices in list matches the order of the adjacency matrix
Collections.sort(betaVertices);
//Add ordered list of vertices to the graph
graphGenerator.second(betaVertices);
//use adjacency matrix of weight created previously
graphGenerator.weights(weights);
graphGenerator.generateGraph(graph);
@@ -112,9 +129,7 @@ public class Simulator implements GraphModificationFunctions {
Duration time = Duration.between(start, stop);
//create GraphWithMapData object
GraphWithMapData output = new GraphWithMapData(graph, numWells, samplePlate.getPopulations(), alphaCount, betaCount,
distCellsMapAlphaKey, plateVtoAMap, plateVtoBMap, plateAtoVMap,
plateBtoVMap, alphaWellCounts, betaWellCounts, time);
GraphWithMapData output = new GraphWithMapData(graph, numWells, samplePlate.getPopulations(), distCellsMapAlphaKey, alphaCount, betaCount, time);
//Set source file name in graph to name of sample plate
output.setSourceFilename(samplePlate.getFilename());
//return GraphWithMapData object
@@ -126,60 +141,67 @@ public class Simulator implements GraphModificationFunctions {
Integer highThreshold, Integer maxOccupancyDifference,
Integer minOverlapPercent, boolean verbose) {
Instant start = Instant.now();
List<Integer[]> removedEdges = new ArrayList<>();
SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph = data.getGraph();
Map<Vertex[], Integer> removedEdges = new HashMap<>();
boolean saveEdges = BiGpairSEQ.cacheGraph();
int numWells = data.getNumWells();
Integer alphaCount = data.getAlphaCount();
Integer betaCount = data.getBetaCount();
//Integer alphaCount = data.getAlphaCount();
//Integer betaCount = data.getBetaCount();
Map<Integer, Integer> distCellsMapAlphaKey = data.getDistCellsMapAlphaKey();
Map<Integer, Integer> plateVtoAMap = data.getPlateVtoAMap();
Map<Integer, Integer> plateVtoBMap = data.getPlateVtoBMap();
Map<Integer, Integer> alphaWellCounts = data.getAlphaWellCounts();
Map<Integer, Integer> betaWellCounts = data.getBetaWellCounts();
SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph = data.getGraph();
Set<Vertex> alphas = new HashSet<>();
Set<Vertex> betas = new HashSet<>();
for(Vertex v: graph.vertexSet()) {
if (SequenceType.CDR3_ALPHA.equals(v.getType())){
alphas.add(v);
}
else {
betas.add(v);
}
}
Integer graphAlphaCount = alphas.size();
Integer graphBetaCount = betas.size();
//remove edges with weights outside given overlap thresholds, add those to removed edge list
if(verbose){System.out.println("Eliminating edges with weights outside overlap threshold values");}
removedEdges.addAll(GraphModificationFunctions.filterByOverlapThresholds(graph, lowThreshold, highThreshold, saveEdges));
removedEdges.putAll(GraphModificationFunctions.filterByOverlapThresholds(graph, lowThreshold, highThreshold, saveEdges));
if(verbose){System.out.println("Over- and under-weight edges removed");}
//remove edges between vertices with too small an overlap size, add those to removed edge list
if(verbose){System.out.println("Eliminating edges with weights less than " + minOverlapPercent.toString() +
" percent of vertex occupancy value.");}
removedEdges.addAll(GraphModificationFunctions.filterByOverlapPercent(graph, alphaWellCounts, betaWellCounts,
plateVtoAMap, plateVtoBMap, minOverlapPercent, saveEdges));
removedEdges.putAll(GraphModificationFunctions.filterByOverlapPercent(graph, minOverlapPercent, saveEdges));
if(verbose){System.out.println("Edges with weights too far below a vertex occupancy value removed");}
//Filter by relative occupancy
if(verbose){System.out.println("Eliminating edges between vertices with occupancy difference > "
+ maxOccupancyDifference);}
removedEdges.addAll(GraphModificationFunctions.filterByRelativeOccupancy(graph, alphaWellCounts, betaWellCounts,
plateVtoAMap, plateVtoBMap, maxOccupancyDifference, saveEdges));
removedEdges.putAll(GraphModificationFunctions.filterByRelativeOccupancy(graph, maxOccupancyDifference, saveEdges));
if(verbose){System.out.println("Edges between vertices of with excessively different occupancy values " +
"removed");}
//Find Maximum Weighted Matching
if(verbose){System.out.println("Finding maximum weighted matching");}
//Find Maximum Weight Matching
//using jheaps library class PairingHeap for improved efficiency
if(verbose){System.out.println("Finding maximum weight matching");}
MaximumWeightBipartiteMatching maxWeightMatching;
//Use correct heap type for priority queue
String heapType = BiGpairSEQ.getPriorityQueueHeapType();
switch (heapType) {
case "PAIRING" -> {
maxWeightMatching = new MaximumWeightBipartiteMatching(graph,
plateVtoAMap.keySet(),
plateVtoBMap.keySet(),
alphas,
betas,
i -> new PairingHeap(Comparator.naturalOrder()));
}
case "FIBONACCI" -> {
maxWeightMatching = new MaximumWeightBipartiteMatching(graph,
plateVtoAMap.keySet(),
plateVtoBMap.keySet(),
alphas,
betas,
i -> new FibonacciHeap(Comparator.naturalOrder()));
}
default -> {
maxWeightMatching = new MaximumWeightBipartiteMatching(graph,
plateVtoAMap.keySet(),
plateVtoBMap.keySet());
alphas,
betas);
}
}
//get the matching
@@ -209,11 +231,14 @@ public class Simulator implements GraphModificationFunctions {
Map<Integer, Integer> matchMap = new HashMap<>();
while(weightIter.hasNext()) {
e = weightIter.next();
Integer source = graph.getEdgeSource(e);
Integer target = graph.getEdgeTarget(e);
Vertex source = graph.getEdgeSource(e);
Vertex target = graph.getEdgeTarget(e);
//Integer source = graph.getEdgeSource(e);
//Integer target = graph.getEdgeTarget(e);
//The match map is all matches found, not just true matches!
matchMap.put(plateVtoAMap.get(source), plateVtoBMap.get(target));
check = plateVtoBMap.get(target).equals(distCellsMapAlphaKey.get(plateVtoAMap.get(source)));
matchMap.put(source.getSequence(), target.getSequence());
check = target.getSequence().equals(distCellsMapAlphaKey.get(source.getSequence()));
//check = plateVtoBMap.get(target).equals(distCellsMapAlphaKey.get(plateVtoAMap.get(source)));
if(check) {
trueCount++;
}
@@ -221,17 +246,19 @@ public class Simulator implements GraphModificationFunctions {
falseCount++;
}
List<String> result = new ArrayList<>();
result.add(plateVtoAMap.get(source).toString());
//alpha sequence
result.add(source.getSequence().toString());
//alpha well count
result.add(alphaWellCounts.get(plateVtoAMap.get(source)).toString());
result.add(plateVtoBMap.get(target).toString());
result.add(source.getOccupancy().toString());
//beta sequence
result.add(target.getSequence().toString());
//beta well count
result.add(betaWellCounts.get(plateVtoBMap.get(target)).toString());
result.add(target.getOccupancy().toString());
//overlap count
result.add(Double.toString(graph.getEdgeWeight(e)));
result.add(Boolean.toString(check));
double pValue = Equations.pValue(numWells, alphaWellCounts.get(plateVtoAMap.get(source)),
betaWellCounts.get(plateVtoBMap.get(target)), graph.getEdgeWeight(e));
double pValue = Equations.pValue(numWells, source.getOccupancy(),
target.getOccupancy(), graph.getEdgeWeight(e));
BigDecimal pValueTrunc = new BigDecimal(pValue, mc);
result.add(pValueTrunc.toString());
allResults.add(result);
@@ -239,7 +266,7 @@ public class Simulator implements GraphModificationFunctions {
//Metadata comments for CSV file
String algoType = "LEDA book with heap: " + heapType;
int min = Math.min(alphaCount, betaCount);
int min = Math.min(graphAlphaCount, graphBetaCount);
//matching weight
BigDecimal totalMatchingWeight = maxWeightMatching.getMatchingWeight();
//rate of attempted matching
@@ -274,8 +301,10 @@ public class Simulator implements GraphModificationFunctions {
metadata.put("algorithm type", algoType);
metadata.put("matching weight", totalMatchingWeight.toString());
metadata.put("well populations", wellPopulationsString);
metadata.put("total alphas found", alphaCount.toString());
metadata.put("total betas found", betaCount.toString());
metadata.put("total alphas on plate", data.getAlphaCount().toString());
metadata.put("total betas on plate", data.getBetaCount().toString());
metadata.put("alphas in graph (after pre-filtering)", graphAlphaCount.toString());
metadata.put("betas in graph (after pre-filtering)", graphBetaCount.toString());
metadata.put("high overlap threshold", highThreshold.toString());
metadata.put("low overlap threshold", lowThreshold.toString());
metadata.put("minimum overlap percent", minOverlapPercent.toString());

View File

@@ -1,23 +1,97 @@
import java.io.Serializable;
public class Vertex implements Serializable, Comparable<Vertex> {
private SequenceType type;
private Integer vertexLabel;
private Integer sequence;
private Integer occupancy;
public class Vertex {
private final Integer vertexLabel;
private final Integer sequence;
private final Integer occupancy;
public Vertex(Integer vertexLabel) {
this.vertexLabel = vertexLabel;
}
public Vertex(String vertexLabel) {
this.vertexLabel = Integer.parseInt((vertexLabel));
}
public Vertex(Integer vertexLabel, Integer sequence, Integer occupancy) {
public Vertex(SequenceType type, Integer sequence, Integer occupancy, Integer vertexLabel) {
this.type = type;
this.vertexLabel = vertexLabel;
this.sequence = sequence;
this.occupancy = occupancy;
}
public Integer getVertexLabel() { return vertexLabel; }
public SequenceType getType() {
return type;
}
public void setType(String type) {
this.type = SequenceType.valueOf(type);
}
public Integer getVertexLabel() {
return vertexLabel;
}
public void setVertexLabel(String label) {
this.vertexLabel = Integer.parseInt(label);
}
public Integer getSequence() {
return sequence;
}
public void setSequence(String sequence) {
this.sequence = Integer.parseInt(sequence);
}
public Integer getOccupancy() {
return occupancy;
}
public void setOccupancy(String occupancy) {
this.occupancy = Integer.parseInt(occupancy);
}
@Override //adapted from JGraphT example code
public int hashCode()
{
return (sequence == null) ? 0 : sequence.hashCode();
}
@Override //adapted from JGraphT example code
public boolean equals(Object obj)
{
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Vertex other = (Vertex) obj;
if (sequence == null) {
return other.sequence == null;
} else {
return sequence.equals(other.sequence);
}
}
@Override //adapted from JGraphT example code
public String toString()
{
StringBuilder sb = new StringBuilder();
sb.append("(").append(vertexLabel)
.append(", Type: ").append(type.name())
.append(", Sequence: ").append(sequence)
.append(", Occupancy: ").append(occupancy).append(")");
return sb.toString();
}
@Override
public int compareTo(Vertex other) {
return this.vertexLabel - other.getVertexLabel();
}
}