Compare commits
2 Commits
4c872ed48e
...
03e8d31210
| Author | SHA1 | Date | |
|---|---|---|---|
| 03e8d31210 | |||
| 582dc3ef40 |
55
readme.md
55
readme.md
@@ -264,29 +264,71 @@ Example output:
|
||||
P-values are calculated *after* BiGpairSEQ matching is completed, for purposes of comparison only,
|
||||
using the (2021 corrected) formula from the original pairSEQ paper. (Howie, et al. 2015)
|
||||
|
||||
### PERFORMANCE
|
||||
Performance details of the example excerpted above:
|
||||
## PERFORMANCE
|
||||
|
||||
On a home computer with a Ryzen 5600X CPU, 64GB of 3200MHz DDR4 RAM (half of which was allocated to the Java Virtual Machine), and a PCIe 3.0 SSD, running Linux Mint 20.3 Edge (5.13 kernel),
|
||||
the author ran a BiGpairSEQ simulation of a 96-well sample plate with 30,000 T cells/well comprising ~11,800 alphas and betas,
|
||||
taken from a sample of 4,000,000 distinct cells with an exponential frequency distribution.
|
||||
taken from a sample of 4,000,000 distinct cells with an exponential frequency distribution (lambda 0.6).
|
||||
|
||||
With min/max occupancy threshold of 3 and 94 wells for matching, and no other pre-filtering, BiGpairSEQ identified 5,151
|
||||
correct pairings and 18 incorrect pairings, for an accuracy of 99.652%.
|
||||
|
||||
The simulation time was 14'22". If intermediate results were held in memory, this would be equivalent to the total elapsed time.
|
||||
The total simulation time was 14'22". If intermediate results were held in memory, this would be equivalent to the total elapsed time.
|
||||
|
||||
Since this implementation of BiGpairSEQ writes intermediate results to disk (to improve the efficiency of *repeated* simulations
|
||||
with different filtering options), the actual elapsed time was greater. File I/O time was not measured, but took
|
||||
slightly less time than the simulation itself. Real elapsed time from start to finish was under 30 minutes.
|
||||
|
||||
## BEHAVIOR WITH RANDOMIZED WELL POPULATIONS
|
||||
|
||||
A series of BiGpairSEQ simulations were conducted using a cell sample file of 3.5 million unique T cells. From these cells,
|
||||
10 sample plate files were created. All of these sample plates had 96 wells, used an exponential distribution with a lambda of 0.6, and
|
||||
had a sequence dropout rate of 10%.
|
||||
|
||||
The well populations of the plates were:
|
||||
* One sample plate with 1000 T cells/well
|
||||
* One sample plate with 2000 T cells/well
|
||||
* One sample plate with 3000 T cells/well
|
||||
* One sample plate with 4000 T cells/well
|
||||
* One sample plate with 5000 T cells/well
|
||||
* Five sample plates with each individual well's population randomized, from 1000 to 5000 T cells. (Average population ~3000 T cells/well.)
|
||||
|
||||
All BiGpairSEQ simulations were run with a low overlap threshold of 3 and a high overlap threshold of 94.
|
||||
|
||||
Constant well population plate results:
|
||||
|
||||
| |1000 Cell/Well Plate|2000 Cell/Well Plate|3000 Cell/Well Plate|4000 Cell/Well Plate|5000 Cell/Well Plate
|
||||
|---|---|---|---|---|---|
|
||||
|Total Alphas Found|6407|7330|7936|8278|8553|
|
||||
|Total Betas Found|6405|7333|7968|8269|8582|
|
||||
|Pairing Attempt Rate|0.661|0.653|0.600|0.579|0.559|
|
||||
|Correct Pairing Count|4231|4749|4723|4761|4750|
|
||||
|Incorrect Pairing Count|3|34|40|26|29|
|
||||
|Pairing Error Rate|0.000709|0.00711|0.00840|0.00543|0.00607|
|
||||
|Simulation Time (Seconds)|500|643|700|589|598|
|
||||
|
||||
Randomized well population plate results:
|
||||
|
||||
| |Random Plate 1 | Random Plate 2|Random Plate 3|Random Plate 4|Random Plate 5|Average|
|
||||
|---|---|---|---|---|---|---|
|
||||
Total Alphas Found|7853|7904|7964|7898|7917|7907|
|
||||
Total Betas Found|7851|7891|7920|7910|7894|7893|
|
||||
Pairing Attempt Rate|0.607|0.610|0.601|0.605|0.603|0.605|
|
||||
Correct Pairing Count|4718|4782|4721|4755|4731|4741|
|
||||
Incorrect Pairing Count|51|35|42|27|29|37|
|
||||
Pairing Error Rate|0.0107|0.00727|0.00882|0.00565|0.00609|0.00771|
|
||||
Simulation Time (Seconds)|590|677|730|618|615|646|
|
||||
|
||||
From these results, it can be seen that BiGpairSEQ treats a sample plate with a highly variable number of T cells/well
|
||||
roughly as though it had a constant well population equal to the average well population.
|
||||
|
||||
## TODO
|
||||
|
||||
* ~~Try invoking GC at end of workloads to reduce paging to disk~~ DONE
|
||||
* ~~Hold graph data in memory until another graph is read-in? ABANDONED UNABANDONED~~ DONE
|
||||
* ~~*No, this won't work, because BiGpairSEQ simulations alter the underlying graph based on filtering constraints. Changes would cascade with multiple experiments.*~~
|
||||
* Might have figured out a way to do it, by taking edges out and then putting them back into the graph. This may actually be possible.
|
||||
* It is possible, though the modifications to the graph incur their own performance penalties. Need testing to see which option is best.
|
||||
* It is possible, though the modifications to the graph incur their own performance penalties. Need testing to see which option is best. It may be computer-specific.
|
||||
* ~~Test whether pairing heap (currently used) or Fibonacci heap is more efficient for priority queue in current matching algorithm~~ DONE
|
||||
* ~~in theory Fibonacci heap should be more efficient, but complexity overhead may eliminate theoretical advantage~~
|
||||
* ~~Add controllable heap-type parameter?~~
|
||||
@@ -300,6 +342,7 @@ slightly less time than the simulation itself. Real elapsed time from start to f
|
||||
* _Got this working, but at the cost of a profoundly strange bug in graph occupancy filtering. Have reverted the repo until I can figure out what caused that. Given how easily Thingiverse transposes CSV matrices in R, might not even be worth fixing.
|
||||
* ~~Enable GraphML output in addition to serialized object binaries, for data portability~~ DONE
|
||||
* ~~Custom vertex type with attribute for sequence occupancy?~~ ABANDONED
|
||||
* Advantage: would eliminate the need to use maps to associate vertices with sequences, which would make the code easier to understand.
|
||||
* Have a branch where this is implemented, but there's a bug that broke matching. Don't currently have time to fix.
|
||||
* ~~Re-implement command line arguments, to enable scripting and statistical simulation studies~~ DONE
|
||||
* Re-implement CDR1 matching method
|
||||
@@ -319,7 +362,7 @@ slightly less time than the simulation itself. Real elapsed time from start to f
|
||||
* [JGraphT](https://jgrapht.org) -- Graph theory data structures and algorithms
|
||||
* [JHeaps](https://www.jheaps.org) -- For pairing heap priority queue used in maximum weight matching algorithm
|
||||
* [Apache Commons CSV](https://commons.apache.org/proper/commons-csv/) -- For CSV file output
|
||||
* [Apache Commons CLI](https://commons.apache.org/proper/commons-cli/) -- To enable command line arguments for scripting. (**Awaiting re-implementation**.)
|
||||
* [Apache Commons CLI](https://commons.apache.org/proper/commons-cli/) -- To enable command line arguments for scripting.
|
||||
|
||||
## ACKNOWLEDGEMENTS
|
||||
BiGpairSEQ was conceived in collaboration with Dr. Alice MacQueen, who brought the original
|
||||
|
||||
Reference in New Issue
Block a user