2 Commits

Author SHA1 Message Date
7f18311054 fix typos 2022-02-24 15:55:32 -06:00
bcb816c3e6 Reformat TODO 2022-02-24 15:48:10 -06:00

View File

@@ -12,7 +12,7 @@ Unlike pairSEQ, which calculates p-values for every TCR alpha/beta overlap and c
against a null distribution, BiGpairSEQ does not do any statistical calculations
directly.
BiGpairSEQ creates a [weightd bipartite graph](https://en.wikipedia.org/wiki/Bipartite_graph) representing the sample plate.
BiGpairSEQ creates a [weighted bipartite graph](https://en.wikipedia.org/wiki/Bipartite_graph) representing the sample plate.
The distinct TCRA and TCRB sequences form the two sets of vertices. Every TCRA/TCRB pair that share a well
are connected by an edge, with the edge weight set to the number of wells in which both sequences appear.
(Sequences present in *all* wells are filtered out prior to creating the graph, as there is no signal in their occupancy pattern.)
@@ -254,7 +254,7 @@ slightly less time than the simulation itself. Real elapsed time from start to f
## TODO
* ~~Try invoking GC at end of workloads to reduce paging to disk~~ DONE
* Hold graph data in memory until another graph is read-in? ~~ABANDONED~~ ~~UNABANDONED~~ DONE
* ~~Hold graph data in memory until another graph is read-in? ABANDONED UNABANDONED~~ DONE
* ~~*No, this won't work, because BiGpairSEQ simulations alter the underlying graph based on filtering constraints. Changes would cascade with multiple experiments.*~~
* Might have figured out a way to do it, by taking edges out and then putting them back into the graph. This may actually be possible.
* It is possible, though the modifications to the graph incur their own performance penalties. Need testing to see which option is best.