Typos in documentation
This commit is contained in:
16
readme.md
16
readme.md
@@ -55,7 +55,7 @@ main menu looks like this:
|
||||
|
||||
```
|
||||
--------BiGPairSEQ SIMULATOR--------
|
||||
ALPHA/BETA T-CELL RECEPTOR MATCHING
|
||||
ALPHA/BETA T CELL RECEPTOR MATCHING
|
||||
USING WEIGHTED BIPARTITE GRAPHS
|
||||
------------------------------------
|
||||
Please select an option:
|
||||
@@ -215,7 +215,7 @@ Example output:
|
||||
---
|
||||
|
||||
**NOTE: The p-values in the output are not used for matching**—they aren't part of the BiGpairSEQ algorithm at all.
|
||||
P-values are calculated *after* BiGpairSEQ matching is completed, for purposes of comparison,
|
||||
P-values are calculated *after* BiGpairSEQ matching is completed, for purposes of comparison only,
|
||||
using the (2021 corrected) formula from the original pairSEQ paper. (Howie, et al. 2015)
|
||||
|
||||
### PERFORMANCE
|
||||
@@ -230,9 +230,9 @@ correct pairings and 18 incorrect pairings, for an accuracy of 99.652%.
|
||||
|
||||
The simulation time was 14'22". If intermediate results were held in memory, this would be equivalent to the total elapsed time.
|
||||
|
||||
Since this implementation of BiGpairSEQ writes intermediate results to disk (to improve the efficiency of *repeated* simulations),
|
||||
the actual elapsed time was greater. File I/O time was not measured, but took slightly less time than the simulation itself.
|
||||
Real elapsed time from start to finish was under 30 minutes.
|
||||
Since this implementation of BiGpairSEQ writes intermediate results to disk (to improve the efficiency of *repeated* simulations
|
||||
with different filtering options), the actual elapsed time was greater. File I/O time was not measured, but took
|
||||
slightly less time than the simulation itself. Real elapsed time from start to finish was under 30 minutes.
|
||||
|
||||
## TODO
|
||||
|
||||
@@ -245,7 +245,7 @@ Real elapsed time from start to finish was under 30 minutes.
|
||||
* _Got this working, but at the cost of a profoundly strange bug in graph occupancy filtering. Have reverted the repo until I can figure out what caused that. Given how easily Thingiverse transposes CSV matrices in R, might not even be worth fixing._
|
||||
* Re-implement command line arguments, to enable scripting and statistical simulation studies
|
||||
* Implement sample plates with random numbers of T cells per well.
|
||||
* Possible BiGpairSEQ advantage over pairSEQ: BiGpairSEQ is resilient to variations in well populations; pairSEQ is not.
|
||||
* Possible BiGpairSEQ advantage over pairSEQ: BiGpairSEQ is resilient to variations in well population sizes on a sample plate; pairSEQ is not.
|
||||
* preliminary data suggests that BiGpairSEQ behaves roughly as though the whole plate had whatever the *average* well concentration is, but that's still speculative.
|
||||
* Enable GraphML output in addition to serialized object binaries, for data portability
|
||||
* Custom vertex type with attribute for sequence occupancy?
|
||||
@@ -261,8 +261,8 @@ Real elapsed time from start to finish was under 30 minutes.
|
||||
## CITATIONS
|
||||
* Howie, B., Sherwood, A. M., et al. ["High-throughput pairing of T cell receptor alpha and beta sequences."](https://pubmed.ncbi.nlm.nih.gov/26290413/) Sci. Transl. Med. 7, 301ra131 (2015)
|
||||
* Duan, R., Su H. ["A Scaling Algorithm for Maximum Weight Matching in Bipartite Graphs."](https://web.eecs.umich.edu/~pettie/matching/Duan-Su-scaling-bipartite-matching.pdf) Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, p. 1413-1424. (2012)
|
||||
* K. Melhorn, St. Näher. [The LEDA Platform of Combinatorial and Geometric Computing.](https://people.mpi-inf.mpg.de/~mehlhorn/LEDAbook.html) Cambridge University Press. Chapter 7, Graph Algorithms; p. 132-162 (1999)
|
||||
* M. Fredman, R. Tarjan. ["Fibonacci heaps and their uses in improved network optimization algorithms."](https://www.cl.cam.ac.uk/teaching/1011/AlgorithII/1987-FredmanTar-fibonacci.pdf) J. ACM, 34(3):596–615 (1987))
|
||||
* Melhorn, K., Näher, St. [The LEDA Platform of Combinatorial and Geometric Computing.](https://people.mpi-inf.mpg.de/~mehlhorn/LEDAbook.html) Cambridge University Press. Chapter 7, Graph Algorithms; p. 132-162 (1999)
|
||||
* Fredman, M., Tarjan, R. ["Fibonacci heaps and their uses in improved network optimization algorithms."](https://www.cl.cam.ac.uk/teaching/1011/AlgorithII/1987-FredmanTar-fibonacci.pdf) J. ACM, 34(3):596–615 (1987))
|
||||
|
||||
## EXTERNAL LIBRARIES USED
|
||||
* [JGraphT](https://jgrapht.org) -- Graph theory data structures and algorithms
|
||||
|
||||
@@ -258,7 +258,7 @@ public class UserInterface {
|
||||
while (!quit) {
|
||||
System.out.println();
|
||||
System.out.println("--------BiGPairSEQ SIMULATOR--------");
|
||||
System.out.println("ALPHA/BETA T-CELL RECEPTOR MATCHING");
|
||||
System.out.println("ALPHA/BETA T CELL RECEPTOR MATCHING");
|
||||
System.out.println(" USING WEIGHTED BIPARTITE GRAPHS ");
|
||||
System.out.println("------------------------------------");
|
||||
System.out.println("Please select an option:");
|
||||
|
||||
Reference in New Issue
Block a user