Update comments
This commit is contained in:
@@ -5,12 +5,27 @@ import org.jgrapht.alg.interfaces.MatchingAlgorithm;
|
||||
import java.math.BigDecimal;
|
||||
import java.util.*;
|
||||
|
||||
/*
|
||||
Maximum weight matching in bipartite graphs using a forward auction algorithm. This implementation uses the Gauss-Seidel
|
||||
version of the forward auction algorithm, in which bids are submitted one at a time. For any weighted bipartite graph
|
||||
with n vertices in the smaller partition, this algorithm will produce a matching that is within n*epsilon of being
|
||||
optimal. For a weighted bipartite graph with strictly integer weights, this matching will always be optimal, and thus
|
||||
is a maximum weight matching.
|
||||
/**
|
||||
* Maximum weight matching in bipartite graphs with strictly integer edge weights, using a forward auction algorithm.
|
||||
* This implementation uses the Gauss-Seidel version of the forward auction algorithm, in which bids are submitted
|
||||
* one at a time. For any weighted bipartite graph with n vertices in the smaller partition, this algorithm will produce
|
||||
* a matching that is within n*epsilon of being optimal. Using an epsilon = 1/(n+1) ensures that this matching differs
|
||||
* from an optimal matching by <1. Thus, for a bipartite graph with strictly integer weights, this algorithm returns
|
||||
* a maximum weight matching.
|
||||
*
|
||||
* See:
|
||||
* "Towards auction algorithms for large dense assignment problems"
|
||||
* Libor Buš and Pavel Tvrdík, Comput Optim Appl (2009) 43:411-436
|
||||
* https://link.springer.com/article/10.1007/s10589-007-9146-5
|
||||
*
|
||||
* See also:
|
||||
* Many books and papers by Dimitri Bertsekas, including chapter 4 of Linear Network Optimization:
|
||||
* https://web.mit.edu/dimitrib/www/LNets_Full_Book.pdf
|
||||
*
|
||||
* @param <V> the graph vertex type
|
||||
* @param <E> the graph edge type
|
||||
*
|
||||
* @author Eugene Fischer
|
||||
*/
|
||||
|
||||
public class MaximumIntegerWeightBipartiteAuctionMatching<V, E> implements MatchingAlgorithm<V, E> {
|
||||
@@ -28,7 +43,7 @@ public class MaximumIntegerWeightBipartiteAuctionMatching<V, E> implements Match
|
||||
this.partition1 = Objects.requireNonNull(partition1, "Partition 1 cannot be null");
|
||||
this.partition2 = Objects.requireNonNull(partition2, "Partition 2 cannot be null");
|
||||
int n = Math.max(partition1.size(), partition2.size());
|
||||
this.epsilon = BigDecimal.valueOf(1 / ((double) n + 1));
|
||||
this.epsilon = BigDecimal.valueOf(1 / ((double) n + 1)); //The minimum price increase of a bid
|
||||
this.matching = new LinkedHashSet<>();
|
||||
this.matchingWeight = BigDecimal.ZERO;
|
||||
}
|
||||
@@ -76,12 +91,13 @@ public class MaximumIntegerWeightBipartiteAuctionMatching<V, E> implements Match
|
||||
prices.put(item, BigDecimal.ZERO);
|
||||
}
|
||||
|
||||
//Initialize queue of all bidders that don't currently own an item
|
||||
//Create a queue of bidders that don't currently own an item, which is initially all of them
|
||||
Queue<V> unmatchedBidders = new ArrayDeque<>();
|
||||
for(V bidder: bidders) {
|
||||
unmatchedBidders.offer(bidder);
|
||||
}
|
||||
|
||||
//Run the auction while there are remaining unmatched bidders
|
||||
while (unmatchedBidders.size() > 0) {
|
||||
V bidder = unmatchedBidders.poll();
|
||||
V item = null;
|
||||
@@ -89,15 +105,15 @@ public class MaximumIntegerWeightBipartiteAuctionMatching<V, E> implements Match
|
||||
BigDecimal runnerUpValue = BigDecimal.valueOf(-1.0);
|
||||
/*
|
||||
Find the items that offer the best and second-best value for the bidder,
|
||||
then submit a bid equal to the price of the best item plus the marginal value over
|
||||
the second-best item plus delta.
|
||||
then submit a bid equal to the price of the best-valued item plus the marginal value over
|
||||
the second-best-valued item plus epsilon.
|
||||
*/
|
||||
for (E edge: graph.edgesOf(bidder)) {
|
||||
double weight = graph.getEdgeWeight(edge);
|
||||
if(weight == 0.0) {
|
||||
continue;
|
||||
}
|
||||
V tmp = getItem(bidder, edge);
|
||||
V tmp = getItem(edge);
|
||||
BigDecimal value = BigDecimal.valueOf(weight).subtract(prices.get(tmp));
|
||||
if (value.compareTo(bestValue) >= 0) {
|
||||
runnerUpValue = bestValue;
|
||||
@@ -119,21 +135,21 @@ public class MaximumIntegerWeightBipartiteAuctionMatching<V, E> implements Match
|
||||
prices.put(item, bid);
|
||||
}
|
||||
}
|
||||
//Add all edges between items and their owners to the matching
|
||||
for (V item: owners.keySet()) {
|
||||
if (owners.get(item) != null) {
|
||||
matching.add(graph.getEdge(item, owners.get(item)));
|
||||
}
|
||||
}
|
||||
|
||||
//Sum the edges of the matching to obtain the matching weight
|
||||
for(E edge: matching) {
|
||||
this.matchingWeight = this.matchingWeight.add(BigDecimal.valueOf(graph.getEdgeWeight(edge)));
|
||||
}
|
||||
|
||||
|
||||
return new MatchingImpl<>(graph, matching, matchingWeight.doubleValue());
|
||||
}
|
||||
|
||||
private V getItem(V bidder, E edge) {
|
||||
private V getItem(E edge) {
|
||||
if (swappedPartitions) {
|
||||
return graph.getEdgeSource(edge);
|
||||
}
|
||||
@@ -142,14 +158,15 @@ public class MaximumIntegerWeightBipartiteAuctionMatching<V, E> implements Match
|
||||
}
|
||||
}
|
||||
|
||||
private V getBidder(V item, E edge) {
|
||||
if (swappedPartitions) {
|
||||
return graph.getEdgeTarget(edge);
|
||||
}
|
||||
else {
|
||||
return graph.getEdgeSource(edge);
|
||||
}
|
||||
}
|
||||
// //method for implementing a forward-reverse auction algorithm, not used here
|
||||
// private V getBidder(E edge) {
|
||||
// if (swappedPartitions) {
|
||||
// return graph.getEdgeTarget(edge);
|
||||
// }
|
||||
// else {
|
||||
// return graph.getEdgeSource(edge);
|
||||
// }
|
||||
// }
|
||||
|
||||
public BigDecimal getMatchingWeight() {
|
||||
return matchingWeight;
|
||||
|
||||
Reference in New Issue
Block a user