Compare commits
27 Commits
8f0ed91cb7
...
58cdf9ae93
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
58cdf9ae93 | ||
|
|
202ad4c834 | ||
|
|
96d49d0034 | ||
|
|
d8e5f7ece0 | ||
|
|
9c81d919b4 | ||
|
|
70b08e7c22 | ||
|
|
44158d264c | ||
|
|
e97c2989db | ||
|
|
f7709ada73 | ||
|
|
25b37eff48 | ||
|
|
fbbb5a8792 | ||
|
|
4b9d7f8494 | ||
|
|
0de12a3a12 | ||
|
|
3c2ec9002e | ||
|
|
bcf3af5a83 | ||
|
|
fcca22a2f0 | ||
|
|
910de0ce9d | ||
|
|
ef349ea5f6 | ||
|
|
174db66c46 | ||
|
|
b3273855a6 | ||
|
|
51c1bc2551 | ||
|
|
f7d522e95d | ||
|
|
5f0c089b0a | ||
|
|
d3066095d9 | ||
|
|
55a5d9a892 | ||
|
|
49708f2f8a | ||
|
|
c7934ca498 |
35
readme.md
35
readme.md
@@ -20,6 +20,7 @@
|
||||
7. CITATIONS
|
||||
8. ACKNOWLEDGEMENTS
|
||||
9. AUTHOR
|
||||
10. DISCLOSURE
|
||||
|
||||
## ABOUT
|
||||
|
||||
@@ -56,10 +57,6 @@ a pairSEQ experiment is bipartite with integer weights, this algorithm seems ide
|
||||
fairly new algorithm, and not yet implemented by the graph theory library used in this simulator (JGraphT), nor has the author had
|
||||
time to implement it himself.
|
||||
|
||||
There have been some studies which show that [auction algorithms](https://en.wikipedia.org/wiki/Auction_algorithm) for the assignment problem can have superior performance in
|
||||
real-world implementations, due to their simplicity, than more complex algorithms with better theoretical asymptotic
|
||||
performance. But, again, there is no such algorithms implemented by JGraphT, nor has the author yet had time to implement one.
|
||||
|
||||
So this program instead uses the [Fibonacci heap](https://en.wikipedia.org/wiki/Fibonacci_heap) based algorithm of Fredman and Tarjan (1987) (essentially
|
||||
[the Hungarian algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) augmented with a more efficeint priority queue) which has a worst-case
|
||||
runtime of **O(n (n log(n) + m))**. The algorithm is implemented as described in Melhorn and Näher (1999). (The simulator
|
||||
@@ -74,6 +71,15 @@ be balanced assignment problems, in practice sequence dropout can cause them to
|
||||
the Hungarian algorithm, graph doubling--which could be challenging with the computational resources available to the
|
||||
author--has not yet been necessary.
|
||||
|
||||
There have been some studies which show that [auction algorithms](https://en.wikipedia.org/wiki/Auction_algorithm) for the assignment problem can have superior performance in
|
||||
real-world implementations, due to their simplicity, than more complex algorithms with better theoretical asymptotic
|
||||
performance. The author has implemented a basic forward auction algorithm, which produces optimal assignment for unbalanced bipartite graphs with
|
||||
integer weights. To allow for unbalanced assignment, this algorithim eschews epsilon-scaling,
|
||||
and as a result is prone to "bidding-wars" which increase run time, making it less efficient than the implementation of
|
||||
the Fredman-Tarjan algorithm in JGraphT. A forward/reverse auction algorithm as developed by Bertsekas and Castañon
|
||||
should be able to handle unbalanced (or, as they call it, asymmetric) assignment much more efficiently, but has yet to be
|
||||
implemented.
|
||||
|
||||
The relative time/space efficiencies of BiGpairSEQ when backed by different MWM algorithms remains an open problem.
|
||||
|
||||
## THE BiGpairSEQ ALGORITHM
|
||||
@@ -614,15 +620,16 @@ the file of distinct cells may enable better simulated replication of this exper
|
||||
* ~~Update graphml output to reflect current Vertex class attributes~~ DONE
|
||||
* Individual well data from the SequenceRecords could be included, if there's ever a reason for it
|
||||
* ~~Implement simulation of sequences being misread as other real sequence~~ DONE
|
||||
* Implement redistributive heap for LEDA matching algorithm to achieve theoretical worst case of O(n(m + n log C)) where C is highest edge weight.
|
||||
* Update matching metadata output options in CLI
|
||||
* Add frequency distribution details to metadata output
|
||||
* need to make an enum for the different distribution types and refactor the Plate class and user interfaces, also add the necessary fields to GraphWithMapData and then call if from Simulator
|
||||
* Update performance data in this readme
|
||||
* Add section to ReadMe describing data filtering methods.
|
||||
* Re-implement CDR1 matching method
|
||||
* Refactor simulator code to collect all needed data in a single scan of the plate
|
||||
* Currently it scans once for the vertices and then again for the edge weights. This made simulating read depth awkward, and incompatible with caching of plate files.
|
||||
* This would be a fairly major rewrite of the simulator code, but could make things faster, and would definitely make them cleaner.
|
||||
* ~~Refactor simulator code to collect all needed data in a single scan of the plate~~ DONE
|
||||
* ~~Currently it scans once for the vertices and then again for the edge weights. This made simulating read depth awkward, and incompatible with caching of plate files.~~
|
||||
* ~~This would be a fairly major rewrite of the simulator code, but could make things faster, and would definitely make them cleaner.~~
|
||||
* Implement Duan and Su's maximum weight matching algorithm
|
||||
* Add controllable algorithm-type parameter?
|
||||
* This would be fun and valuable, but probably take more time than I have for a hobby project.
|
||||
@@ -649,8 +656,18 @@ the file of distinct cells may enable better simulated replication of this exper
|
||||
* [Apache Commons CLI](https://commons.apache.org/proper/commons-cli/) -- To enable command line arguments for scripting.
|
||||
|
||||
## ACKNOWLEDGEMENTS
|
||||
BiGpairSEQ was conceived in collaboration with Dr. Alice MacQueen, who brought the original
|
||||
BiGpairSEQ was conceived in collaboration with the author's spouse, Dr. Alice MacQueen, who brought the original
|
||||
pairSEQ paper to the author's attention and explained all the biology terms he didn't know.
|
||||
|
||||
## AUTHOR
|
||||
BiGpairSEQ algorithm and simulation by Eugene Fischer, 2021. Improvements and documentation, 2022.
|
||||
BiGpairSEQ algorithm and simulation by Eugene Fischer, 2021. Improvements and documentation, 2022–2023.
|
||||
|
||||
## DISCLOSURE
|
||||
The earliest versions of the BiGpairSEQ simulator were written in 2021 to let Dr. MacQueen test hypothetical extensions
|
||||
of the published pairSEQ protocol while she was interviewing for a position at Adaptive Biotechnologies. She has been
|
||||
employed at Adaptive Biotechnologies since 2022.
|
||||
|
||||
The author has worked on this BiGpairSEQ simulator since 2021 without Dr. MacQueen's involvement, since she has had
|
||||
access to related, proprietary technologies. The author has had no such access, relying exclusively on the 2015 pairSEQ
|
||||
paper and other academic publications. He continues to work on BiGpairSEQ
|
||||
recreationally, as it involves some very beautiful math.
|
||||
4
src/main/java/AlgorithmType.java
Normal file
4
src/main/java/AlgorithmType.java
Normal file
@@ -0,0 +1,4 @@
|
||||
public enum AlgorithmType {
|
||||
HUNGARIAN, //Hungarian algorithm
|
||||
AUCTION, //Forward auction algorithm
|
||||
}
|
||||
@@ -13,6 +13,7 @@ public class BiGpairSEQ {
|
||||
private static boolean cacheCells = false;
|
||||
private static boolean cachePlate = false;
|
||||
private static boolean cacheGraph = false;
|
||||
private static AlgorithmType matchingAlgoritmType = AlgorithmType.HUNGARIAN;
|
||||
private static HeapType priorityQueueHeapType = HeapType.FIBONACCI;
|
||||
private static boolean outputBinary = true;
|
||||
private static boolean outputGraphML = false;
|
||||
@@ -108,7 +109,6 @@ public class BiGpairSEQ {
|
||||
return graphFilename;
|
||||
}
|
||||
|
||||
|
||||
public static boolean cacheCells() {
|
||||
return cacheCells;
|
||||
}
|
||||
@@ -157,10 +157,16 @@ public class BiGpairSEQ {
|
||||
BiGpairSEQ.cacheGraph = cacheGraph;
|
||||
}
|
||||
|
||||
public static String getPriorityQueueHeapType() {
|
||||
return priorityQueueHeapType.name();
|
||||
public static HeapType getPriorityQueueHeapType() {
|
||||
return priorityQueueHeapType;
|
||||
}
|
||||
|
||||
public static AlgorithmType getMatchingAlgoritmType() { return matchingAlgoritmType; }
|
||||
|
||||
public static void setHungarianAlgorithm() { matchingAlgoritmType = AlgorithmType.HUNGARIAN; }
|
||||
|
||||
public static void setAuctionAlgorithm() { matchingAlgoritmType = AlgorithmType.AUCTION; }
|
||||
|
||||
public static void setPairingHeap() {
|
||||
priorityQueueHeapType = HeapType.PAIRING;
|
||||
}
|
||||
|
||||
@@ -583,8 +583,9 @@ public class InteractiveInterface {
|
||||
while(!backToOptions) {
|
||||
System.out.println("\n---------ALGORITHM OPTIONS----------");
|
||||
System.out.println("1) Use scaling algorithm by Duan and Su.");
|
||||
System.out.println("2) Use LEDA book algorithm with Fibonacci heap priority queue");
|
||||
System.out.println("3) Use LEDA book algorithm with pairing heap priority queue");
|
||||
System.out.println("2) Use Hungarian algorithm with Fibonacci heap priority queue");
|
||||
System.out.println("3) Use Hungarian algorithm with pairing heap priority queue");
|
||||
System.out.println("4) Use auction algorithm");
|
||||
System.out.println("0) Return to Options menu");
|
||||
try {
|
||||
input = sc.nextInt();
|
||||
@@ -592,14 +593,18 @@ public class InteractiveInterface {
|
||||
case 1 -> System.out.println("This option is not yet implemented. Choose another.");
|
||||
case 2 -> {
|
||||
BiGpairSEQ.setFibonacciHeap();
|
||||
System.out.println("MWM algorithm set to LEDA with Fibonacci heap");
|
||||
System.out.println("MWM algorithm set to Hungarian with Fibonacci heap");
|
||||
backToOptions = true;
|
||||
}
|
||||
case 3 -> {
|
||||
BiGpairSEQ.setPairingHeap();
|
||||
System.out.println("MWM algorithm set to LEDA with pairing heap");
|
||||
System.out.println("MWM algorithm set to Hungarian with pairing heap");
|
||||
backToOptions = true;
|
||||
}
|
||||
case 4 -> {
|
||||
BiGpairSEQ.setAuctionAlgorithm();
|
||||
System.out.println("MWM algorithm set to auction");
|
||||
}
|
||||
case 0 -> backToOptions = true;
|
||||
default -> System.out.println("Invalid input");
|
||||
}
|
||||
|
||||
176
src/main/java/MaximumIntegerWeightBipartiteAuctionMatching.java
Normal file
176
src/main/java/MaximumIntegerWeightBipartiteAuctionMatching.java
Normal file
@@ -0,0 +1,176 @@
|
||||
import org.jgrapht.Graph;
|
||||
import org.jgrapht.GraphTests;
|
||||
import org.jgrapht.alg.interfaces.MatchingAlgorithm;
|
||||
|
||||
import java.math.BigDecimal;
|
||||
import java.util.*;
|
||||
|
||||
/**
|
||||
* Maximum weight matching in bipartite graphs with strictly integer edge weights, using a forward auction algorithm.
|
||||
* This implementation uses the Gauss-Seidel version of the forward auction algorithm, in which bids are submitted
|
||||
* one at a time. For any weighted bipartite graph with n vertices in the smaller partition, this algorithm will produce
|
||||
* a matching that is within n*epsilon of being optimal. Using an epsilon = 1/(n+1) ensures that this matching differs
|
||||
* from an optimal matching by <1. Thus, for a bipartite graph with strictly integer weights, this algorithm returns
|
||||
* a maximum weight matching.
|
||||
*
|
||||
* See:
|
||||
* "Towards auction algorithms for large dense assignment problems"
|
||||
* Libor Buš and Pavel Tvrdík, Comput Optim Appl (2009) 43:411-436
|
||||
* https://link.springer.com/article/10.1007/s10589-007-9146-5
|
||||
*
|
||||
* See also:
|
||||
* Many books and papers by Dimitri Bertsekas, including chapter 4 of Linear Network Optimization:
|
||||
* https://web.mit.edu/dimitrib/www/LNets_Full_Book.pdf
|
||||
*
|
||||
* @param <V> the graph vertex type
|
||||
* @param <E> the graph edge type
|
||||
*
|
||||
* @author Eugene Fischer
|
||||
*/
|
||||
|
||||
public class MaximumIntegerWeightBipartiteAuctionMatching<V, E> implements MatchingAlgorithm<V, E> {
|
||||
|
||||
private final Graph<V, E> graph;
|
||||
private final Set<V> partition1;
|
||||
private final Set<V> partition2;
|
||||
private final BigDecimal epsilon;
|
||||
private final Set<E> matching;
|
||||
private BigDecimal matchingWeight;
|
||||
private boolean swappedPartitions = false;
|
||||
|
||||
public MaximumIntegerWeightBipartiteAuctionMatching(Graph<V, E> graph, Set<V> partition1, Set<V> partition2) {
|
||||
this.graph = GraphTests.requireUndirected(graph);
|
||||
this.partition1 = Objects.requireNonNull(partition1, "Partition 1 cannot be null");
|
||||
this.partition2 = Objects.requireNonNull(partition2, "Partition 2 cannot be null");
|
||||
int n = Math.max(partition1.size(), partition2.size());
|
||||
this.epsilon = BigDecimal.valueOf(1 / ((double) n + 1)); //The minimum price increase of a bid
|
||||
this.matching = new LinkedHashSet<>();
|
||||
this.matchingWeight = BigDecimal.ZERO;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Method coded using MaximumWeightBipartiteMatching.class from JgraphT as a model
|
||||
*/
|
||||
@Override
|
||||
public Matching<V, E> getMatching() {
|
||||
|
||||
/*
|
||||
* Test input instance
|
||||
*/
|
||||
if (!GraphTests.isSimple(graph)) {
|
||||
throw new IllegalArgumentException("Only simple graphs supported");
|
||||
}
|
||||
if (!GraphTests.isBipartitePartition(graph, partition1, partition2)) {
|
||||
throw new IllegalArgumentException("Graph partition is not bipartite");
|
||||
}
|
||||
|
||||
/*
|
||||
If the two partitions are different sizes, the bidders must be the smaller of the two partitions.
|
||||
*/
|
||||
Set<V> items;
|
||||
Set<V> bidders;
|
||||
if (partition2.size() >= partition1.size()) {
|
||||
bidders = partition1;
|
||||
items = partition2;
|
||||
}
|
||||
else {
|
||||
bidders = partition2;
|
||||
items = partition1;
|
||||
swappedPartitions = true;
|
||||
}
|
||||
|
||||
/*
|
||||
Create a map to track the owner of each item, which is initially null,
|
||||
and a map to track the price of each item, which is initially 0. An
|
||||
Initial price of 0 allows for asymmetric assignment (though does mean
|
||||
that this form of the algorithm cannot take advantage of epsilon-scaling).
|
||||
*/
|
||||
Map<V, V> owners = new HashMap<>();
|
||||
Map<V, BigDecimal> prices = new HashMap<>();
|
||||
for(V item: items) {
|
||||
owners.put(item, null);
|
||||
prices.put(item, BigDecimal.ZERO);
|
||||
}
|
||||
|
||||
//Create a queue of bidders that don't currently own an item, which is initially all of them
|
||||
Queue<V> unmatchedBidders = new ArrayDeque<>();
|
||||
for(V bidder: bidders) {
|
||||
unmatchedBidders.offer(bidder);
|
||||
}
|
||||
|
||||
//Run the auction while there are remaining unmatched bidders
|
||||
while (unmatchedBidders.size() > 0) {
|
||||
V bidder = unmatchedBidders.poll();
|
||||
V item = null;
|
||||
BigDecimal bestValue = BigDecimal.valueOf(-1.0);
|
||||
BigDecimal runnerUpValue = BigDecimal.valueOf(-1.0);
|
||||
/*
|
||||
Find the items that offer the best and second-best value for the bidder,
|
||||
then submit a bid equal to the price of the best-valued item plus the marginal value over
|
||||
the second-best-valued item plus epsilon.
|
||||
*/
|
||||
for (E edge: graph.edgesOf(bidder)) {
|
||||
double weight = graph.getEdgeWeight(edge);
|
||||
if(weight == 0.0) {
|
||||
continue;
|
||||
}
|
||||
V tmp = getItem(edge);
|
||||
BigDecimal value = BigDecimal.valueOf(weight).subtract(prices.get(tmp));
|
||||
if (value.compareTo(bestValue) >= 0) {
|
||||
runnerUpValue = bestValue;
|
||||
bestValue = value;
|
||||
item = tmp;
|
||||
}
|
||||
else if (value.compareTo(runnerUpValue) >= 0) {
|
||||
runnerUpValue = value;
|
||||
}
|
||||
}
|
||||
if(bestValue.compareTo(BigDecimal.ZERO) >= 0) {
|
||||
V formerOwner = owners.get(item);
|
||||
BigDecimal price = prices.get(item);
|
||||
BigDecimal bid = price.add(bestValue).subtract(runnerUpValue).add(epsilon);
|
||||
if (formerOwner != null) {
|
||||
unmatchedBidders.offer(formerOwner);
|
||||
}
|
||||
owners.put(item, bidder);
|
||||
prices.put(item, bid);
|
||||
}
|
||||
}
|
||||
//Add all edges between items and their owners to the matching
|
||||
for (V item: owners.keySet()) {
|
||||
if (owners.get(item) != null) {
|
||||
matching.add(graph.getEdge(item, owners.get(item)));
|
||||
}
|
||||
}
|
||||
//Sum the edges of the matching to obtain the matching weight
|
||||
for(E edge: matching) {
|
||||
this.matchingWeight = this.matchingWeight.add(BigDecimal.valueOf(graph.getEdgeWeight(edge)));
|
||||
}
|
||||
|
||||
return new MatchingImpl<>(graph, matching, matchingWeight.doubleValue());
|
||||
}
|
||||
|
||||
private V getItem(E edge) {
|
||||
if (swappedPartitions) {
|
||||
return graph.getEdgeSource(edge);
|
||||
}
|
||||
else {
|
||||
return graph.getEdgeTarget(edge);
|
||||
}
|
||||
}
|
||||
|
||||
// //method for implementing a forward-reverse auction algorithm, not used here
|
||||
// private V getBidder(E edge) {
|
||||
// if (swappedPartitions) {
|
||||
// return graph.getEdgeTarget(edge);
|
||||
// }
|
||||
// else {
|
||||
// return graph.getEdgeSource(edge);
|
||||
// }
|
||||
// }
|
||||
|
||||
public BigDecimal getMatchingWeight() {
|
||||
return matchingWeight;
|
||||
}
|
||||
}
|
||||
212
src/main/java/MaximumWeightBipartiteLookBackAuctionMatching.java
Normal file
212
src/main/java/MaximumWeightBipartiteLookBackAuctionMatching.java
Normal file
@@ -0,0 +1,212 @@
|
||||
import org.jgrapht.Graph;
|
||||
import org.jgrapht.GraphTests;
|
||||
import org.jgrapht.alg.interfaces.MatchingAlgorithm;
|
||||
import org.jgrapht.alg.util.Pair;
|
||||
|
||||
import java.math.BigDecimal;
|
||||
import java.util.*;
|
||||
|
||||
/*
|
||||
Maximum weight matching in bipartite graphs with strictly integer edge weights, found using the
|
||||
unscaled look-back auction algorithm
|
||||
*/
|
||||
|
||||
public class MaximumWeightBipartiteLookBackAuctionMatching<V, E> implements MatchingAlgorithm<V, E> {
|
||||
|
||||
private final Graph<V, E> graph;
|
||||
private final Set<V> partition1;
|
||||
private final Set<V> partition2;
|
||||
private final BigDecimal delta;
|
||||
private final Set<E> matching;
|
||||
private BigDecimal matchingWeight;
|
||||
private boolean swappedPartitions = false;
|
||||
|
||||
public MaximumWeightBipartiteLookBackAuctionMatching(Graph<V, E> graph, Set<V> partition1, Set<V> partition2) {
|
||||
this.graph = GraphTests.requireUndirected(graph);
|
||||
this.partition1 = Objects.requireNonNull(partition1, "Partition 1 cannot be null");
|
||||
this.partition2 = Objects.requireNonNull(partition2, "Partition 2 cannot be null");
|
||||
int n = Math.max(partition1.size(), partition2.size());
|
||||
this.delta = BigDecimal.valueOf(1 / ((double) n + 1));
|
||||
this.matching = new LinkedHashSet<>();
|
||||
this.matchingWeight = BigDecimal.ZERO;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Method coded using MaximumWeightBipartiteMatching.class from JgraphT as a model
|
||||
*/
|
||||
@Override
|
||||
public Matching<V, E> getMatching() {
|
||||
|
||||
/*
|
||||
* Test input instance
|
||||
*/
|
||||
if (!GraphTests.isSimple(graph)) {
|
||||
throw new IllegalArgumentException("Only simple graphs supported");
|
||||
}
|
||||
if (!GraphTests.isBipartitePartition(graph, partition1, partition2)) {
|
||||
throw new IllegalArgumentException("Graph partition is not bipartite");
|
||||
}
|
||||
|
||||
/*
|
||||
If the two partitions are different sizes, the bidders must be the smaller of the two partitions.
|
||||
*/
|
||||
Set<V> items;
|
||||
Set<V> bidders;
|
||||
if (partition2.size() >= partition1.size()) {
|
||||
bidders = partition1;
|
||||
items = partition2;
|
||||
}
|
||||
else {
|
||||
bidders = partition2;
|
||||
items = partition1;
|
||||
swappedPartitions = true;
|
||||
}
|
||||
|
||||
/*
|
||||
Create a map to track the owner of each item, which is initially null,
|
||||
and a map to track the price of each item, which is initially 0.
|
||||
*/
|
||||
Map<V, V> owners = new HashMap<>();
|
||||
|
||||
/*
|
||||
Create a map to track the prices of the objects
|
||||
*/
|
||||
Map<V, BigDecimal> prices = new HashMap<>();
|
||||
for(V item: items) {
|
||||
owners.put(item, null);
|
||||
prices.put(item, BigDecimal.ZERO);
|
||||
}
|
||||
|
||||
/*
|
||||
Create a map to track the most valuable object for a bidder
|
||||
*/
|
||||
Map<V, V> mostValuableItems = new HashMap<>();
|
||||
|
||||
/*
|
||||
Create a map to track the second most valuable object for a bidder
|
||||
*/
|
||||
Map<V, V> runnerUpItems = new HashMap<>();
|
||||
|
||||
/*
|
||||
Create a map to track the bidder value thresholds
|
||||
*/
|
||||
Map<V, BigDecimal> valueThresholds = new HashMap<>();
|
||||
|
||||
|
||||
//Initialize queue of all bidders that don't currently own an item
|
||||
Queue<V> unmatchedBidders = new ArrayDeque<>();
|
||||
for(V bidder: bidders) {
|
||||
unmatchedBidders.offer(bidder);
|
||||
valueThresholds.put(bidder, BigDecimal.ZERO);
|
||||
mostValuableItems.put(bidder, null);
|
||||
runnerUpItems.put(bidder, null);
|
||||
}
|
||||
|
||||
while (unmatchedBidders.size() > 0) {
|
||||
V bidder = unmatchedBidders.poll();
|
||||
// BigDecimal valueThreshold = valueThresholds.get(bidder);
|
||||
BigDecimal bestValue = BigDecimal.ZERO;
|
||||
BigDecimal runnerUpValue = BigDecimal.ZERO;
|
||||
boolean reinitialize = true;
|
||||
// if (mostValuableItems.get(bidder) != null && runnerUpItems.get(bidder) != null) {
|
||||
// reinitialize = false;
|
||||
// //get the weight of the edge between the bidder and the best valued item
|
||||
// V bestItem = mostValuableItems.get(bidder);
|
||||
// BigDecimal bestItemWeight = BigDecimal.valueOf(graph.getEdgeWeight(graph.getEdge(bidder, bestItem)));
|
||||
// bestValue = bestItemWeight.subtract(prices.get(bestItem));
|
||||
// V runnerUpItem = runnerUpItems.get(bidder);
|
||||
// BigDecimal runnerUpWeight = BigDecimal.valueOf(graph.getEdgeWeight(graph.getEdge(bidder, runnerUpItem)));
|
||||
// runnerUpValue = runnerUpWeight.subtract(prices.get(runnerUpItem));
|
||||
// //if both values are still above the threshold
|
||||
// if (bestValue.compareTo(valueThreshold) >= 0 && runnerUpValue.compareTo(valueThreshold) >= 0) {
|
||||
// if (bestValue.compareTo(runnerUpValue) < 0) { //if best value is lower than runner up
|
||||
// BigDecimal tmp = bestValue;
|
||||
// bestValue = runnerUpValue;
|
||||
// runnerUpValue = tmp;
|
||||
// mostValuableItems.put(bidder, runnerUpItem);
|
||||
// runnerUpItems.put(bidder, bestItem);
|
||||
// }
|
||||
// BigDecimal newValueThreshold = bestValue.min(runnerUpValue);
|
||||
// valueThresholds.put(bidder, newValueThreshold);
|
||||
// System.out.println("lookback successful");
|
||||
// }
|
||||
// else {
|
||||
// reinitialize = true; //lookback failed
|
||||
// }
|
||||
// }
|
||||
if (reinitialize){
|
||||
bestValue = BigDecimal.ZERO;
|
||||
runnerUpValue = BigDecimal.ZERO;
|
||||
for (E edge: graph.edgesOf(bidder)) {
|
||||
double weight = graph.getEdgeWeight(edge);
|
||||
if (weight == 0.0) {
|
||||
continue;
|
||||
}
|
||||
V tmpItem = getItem(bidder, edge);
|
||||
BigDecimal tmpValue = BigDecimal.valueOf(weight).subtract(prices.get(tmpItem));
|
||||
if (tmpValue.compareTo(bestValue) >= 0) {
|
||||
runnerUpValue = bestValue;
|
||||
bestValue = tmpValue;
|
||||
runnerUpItems.put(bidder, mostValuableItems.get(bidder));
|
||||
mostValuableItems.put(bidder, tmpItem);
|
||||
}
|
||||
else if (tmpValue.compareTo(runnerUpValue) >= 0) {
|
||||
runnerUpValue = tmpValue;
|
||||
runnerUpItems.put(bidder, tmpItem);
|
||||
}
|
||||
}
|
||||
valueThresholds.put(bidder, runnerUpValue);
|
||||
}
|
||||
//Should now have initialized the maps to make look back possible
|
||||
//skip this bidder if the best value is still zero
|
||||
if (BigDecimal.ZERO.equals(bestValue)) {
|
||||
continue;
|
||||
}
|
||||
V mostValuableItem = mostValuableItems.get(bidder);
|
||||
BigDecimal price = prices.get(mostValuableItem);
|
||||
BigDecimal bid = price.add(bestValue).subtract(runnerUpValue).add(this.delta);
|
||||
V formerOwner = owners.get(mostValuableItem);
|
||||
if (formerOwner != null) {
|
||||
unmatchedBidders.offer(formerOwner);
|
||||
}
|
||||
owners.put(mostValuableItem, bidder);
|
||||
prices.put(mostValuableItem, bid);
|
||||
}
|
||||
|
||||
for (V item: owners.keySet()) {
|
||||
if (owners.get(item) != null) {
|
||||
matching.add(graph.getEdge(item, owners.get(item)));
|
||||
}
|
||||
}
|
||||
|
||||
for(E edge: matching) {
|
||||
this.matchingWeight = this.matchingWeight.add(BigDecimal.valueOf(graph.getEdgeWeight(edge)));
|
||||
}
|
||||
|
||||
|
||||
return new MatchingImpl<>(graph, matching, matchingWeight.doubleValue());
|
||||
}
|
||||
|
||||
private V getItem(V bidder, E edge) {
|
||||
if (swappedPartitions) {
|
||||
return graph.getEdgeSource(edge);
|
||||
}
|
||||
else {
|
||||
return graph.getEdgeTarget(edge);
|
||||
}
|
||||
}
|
||||
|
||||
private V getBidder(V item, E edge) {
|
||||
if (swappedPartitions) {
|
||||
return graph.getEdgeTarget(edge);
|
||||
}
|
||||
else {
|
||||
return graph.getEdgeSource(edge);
|
||||
}
|
||||
}
|
||||
|
||||
public BigDecimal getMatchingWeight() {
|
||||
return matchingWeight;
|
||||
}
|
||||
}
|
||||
@@ -61,12 +61,24 @@ public class Plate {
|
||||
this.wells = wells;
|
||||
this.size = wells.size();
|
||||
|
||||
double totalCellCount = 0.0;
|
||||
double totalDropoutCount = 0.0;
|
||||
List<Integer> concentrations = new ArrayList<>();
|
||||
for (List<String[]> w: wells) {
|
||||
if(!concentrations.contains(w.size())){
|
||||
concentrations.add(w.size());
|
||||
}
|
||||
for (String[] cell: w) {
|
||||
totalCellCount += 1.0;
|
||||
for (String sequence: cell) {
|
||||
if("-1".equals(sequence)) {
|
||||
totalDropoutCount += 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
double totalSequenceCount = totalCellCount * 4;
|
||||
this.error = totalDropoutCount / totalSequenceCount;
|
||||
this.populations = new Integer[concentrations.size()];
|
||||
for (int i = 0; i < this.populations.length; i++) {
|
||||
this.populations[i] = concentrations.get(i);
|
||||
|
||||
@@ -93,8 +93,8 @@ public class PlateFileWriter {
|
||||
printer.printComment("Cell source file name: " + sourceFileName);
|
||||
printer.printComment("Each row represents one well on the plate.");
|
||||
printer.printComment("Plate size: " + size);
|
||||
printer.printComment("Error rate: " + error);
|
||||
printer.printComment("Well populations: " + wellPopulationsString);
|
||||
printer.printComment("Error rate: " + error);
|
||||
if(isExponential){
|
||||
printer.printComment("Lambda: " + lambda);
|
||||
}
|
||||
|
||||
@@ -183,32 +183,33 @@ public class Simulator implements GraphModificationFunctions {
|
||||
"removed");}
|
||||
|
||||
//Find Maximum Weight Matching
|
||||
//using jheaps library class PairingHeap for improved efficiency
|
||||
if(verbose){System.out.println("Finding maximum weight matching");}
|
||||
MaximumWeightBipartiteMatching maxWeightMatching;
|
||||
//Use correct heap type for priority queue
|
||||
String heapType = BiGpairSEQ.getPriorityQueueHeapType();
|
||||
switch (heapType) {
|
||||
case "PAIRING" -> {
|
||||
maxWeightMatching = new MaximumWeightBipartiteMatching(graph,
|
||||
alphas,
|
||||
betas,
|
||||
i -> new PairingHeap(Comparator.naturalOrder()));
|
||||
//The matching object
|
||||
MatchingAlgorithm<Vertex, DefaultWeightedEdge> maxWeightMatching;
|
||||
//Determine algorithm type
|
||||
AlgorithmType algorithm = BiGpairSEQ.getMatchingAlgoritmType();
|
||||
switch (algorithm) { //Only two options now, but I have room to add more algorithms in the future this way
|
||||
case AUCTION -> {
|
||||
//create a new MaximumIntegerWeightBipartiteAuctionMatching
|
||||
maxWeightMatching = new MaximumIntegerWeightBipartiteAuctionMatching<>(graph, alphas, betas);
|
||||
}
|
||||
case "FIBONACCI" -> {
|
||||
maxWeightMatching = new MaximumWeightBipartiteMatching(graph,
|
||||
alphas,
|
||||
betas,
|
||||
i -> new FibonacciHeap(Comparator.naturalOrder()));
|
||||
}
|
||||
default -> {
|
||||
maxWeightMatching = new MaximumWeightBipartiteMatching(graph,
|
||||
alphas,
|
||||
betas);
|
||||
default -> { //HUNGARIAN
|
||||
//use selected heap type for priority queue
|
||||
HeapType heap = BiGpairSEQ.getPriorityQueueHeapType();
|
||||
if(HeapType.PAIRING.equals(heap)) {
|
||||
maxWeightMatching = new MaximumWeightBipartiteMatching<Vertex, DefaultWeightedEdge>(graph,
|
||||
alphas,
|
||||
betas,
|
||||
i -> new PairingHeap(Comparator.naturalOrder()));
|
||||
}
|
||||
else {//Fibonacci is the default, and what's used in the JGraphT implementation
|
||||
maxWeightMatching = new MaximumWeightBipartiteMatching<Vertex, DefaultWeightedEdge>(graph,
|
||||
alphas,
|
||||
betas);
|
||||
}
|
||||
}
|
||||
}
|
||||
//get the matching
|
||||
MatchingAlgorithm.Matching<String, DefaultWeightedEdge> graphMatching = maxWeightMatching.getMatching();
|
||||
MatchingAlgorithm.Matching<Vertex, DefaultWeightedEdge> matching = maxWeightMatching.getMatching();
|
||||
if(verbose){System.out.println("Matching completed");}
|
||||
Instant stop = Instant.now();
|
||||
|
||||
@@ -226,7 +227,7 @@ public class Simulator implements GraphModificationFunctions {
|
||||
List<List<String>> allResults = new ArrayList<>();
|
||||
NumberFormat nf = NumberFormat.getInstance(Locale.US);
|
||||
MathContext mc = new MathContext(3);
|
||||
Iterator<DefaultWeightedEdge> weightIter = graphMatching.iterator();
|
||||
Iterator<DefaultWeightedEdge> weightIter = matching.iterator();
|
||||
DefaultWeightedEdge e;
|
||||
int trueCount = 0;
|
||||
int falseCount = 0;
|
||||
@@ -267,10 +268,19 @@ public class Simulator implements GraphModificationFunctions {
|
||||
}
|
||||
|
||||
//Metadata comments for CSV file
|
||||
String algoType = "LEDA book with heap: " + heapType;
|
||||
String algoType;
|
||||
switch(algorithm) {
|
||||
case AUCTION -> {
|
||||
algoType = "Auction algorithm";
|
||||
}
|
||||
default -> { //HUNGARIAN
|
||||
algoType = "Hungarian algorithm with heap: " + BiGpairSEQ.getPriorityQueueHeapType().name();
|
||||
}
|
||||
}
|
||||
|
||||
int min = Math.min(graphAlphaCount, graphBetaCount);
|
||||
//matching weight
|
||||
BigDecimal totalMatchingWeight = maxWeightMatching.getMatchingWeight();
|
||||
Double matchingWeight = matching.getWeight();
|
||||
//rate of attempted matching
|
||||
double attemptRate = (double) (trueCount + falseCount) / min;
|
||||
BigDecimal attemptRateTrunc = new BigDecimal(attemptRate, mc);
|
||||
@@ -309,7 +319,7 @@ public class Simulator implements GraphModificationFunctions {
|
||||
metadata.put("sequence dropout rate", data.getDropoutRate().toString());
|
||||
metadata.put("graph filename", dataFilename);
|
||||
metadata.put("MWM algorithm type", algoType);
|
||||
metadata.put("matching weight", totalMatchingWeight.toString());
|
||||
metadata.put("matching weight", matchingWeight.toString());
|
||||
metadata.put("well populations", wellPopulationsString);
|
||||
metadata.put("sequence read depth", data.getReadDepth().toString());
|
||||
metadata.put("sequence read error rate", data.getReadErrorRate().toString());
|
||||
@@ -347,6 +357,7 @@ public class Simulator implements GraphModificationFunctions {
|
||||
return output;
|
||||
}
|
||||
|
||||
|
||||
//Commented out CDR1 matching until it's time to re-implement it
|
||||
// //Simulated matching of CDR1s to CDR3s. Requires MatchingResult from prior run of matchCDR3s.
|
||||
// public static MatchingResult[] matchCDR1s(List<Integer[]> distinctCells,
|
||||
|
||||
@@ -74,4 +74,12 @@ public class Vertex implements Serializable, Comparable<Vertex> {
|
||||
public int compareTo(Vertex other) {
|
||||
return this.vertexLabel - other.getVertexLabel();
|
||||
}
|
||||
|
||||
public Double getPotential() {
|
||||
return potential;
|
||||
}
|
||||
|
||||
public void setPotential(Double potential) {
|
||||
this.potential = potential;
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user