Files
BiGpairSEQ/src/main/java/UserInterface.java
2022-02-21 11:19:54 -06:00

695 lines
35 KiB
Java

import org.apache.commons.cli.*;
import java.io.IOException;
import java.util.List;
import java.util.Scanner;
import java.util.InputMismatchException;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
//
public class UserInterface {
final static Scanner sc = new Scanner(System.in);
static int input;
static boolean quit = false;
public static void main(String[] args) {
//for now, commenting out all the command line argument stuff.
// Refactoring to output files of graphs, so it would all need to change anyway.
// if(args.length != 0){
// //These command line options are a big mess
// //Really, I don't think command line tools are expected to work in this many different modes
// //making cells, making plates, and matching are the sort of thing that UNIX philosophy would say
// //should be three separate programs.
// //There might be a way to do it with option parameters?
//
// Options mainOptions = new Options();
// Option makeCells = Option.builder("cells")
// .longOpt("make-cells")
// .desc("Makes a file of distinct cells")
// .build();
// Option makePlate = Option.builder("plates")
// .longOpt("make-plates")
// .desc("Makes a sample plate file")
// .build();
// Option matchCDR3 = Option.builder("match")
// .longOpt("match-cdr3")
// .desc("Match CDR3s. Requires a cell sample file and any number of plate files.")
// .build();
// OptionGroup mainGroup = new OptionGroup();
// mainGroup.addOption(makeCells);
// mainGroup.addOption(makePlate);
// mainGroup.addOption(matchCDR3);
// mainGroup.setRequired(true);
// mainOptions.addOptionGroup(mainGroup);
//
// //Reuse clones of this for other options groups, rather than making it lots of times
// Option outputFile = Option.builder("o")
// .longOpt("output-file")
// .hasArg()
// .argName("filename")
// .desc("Name of output file")
// .build();
// mainOptions.addOption(outputFile);
//
// //Options cellOptions = new Options();
// Option numCells = Option.builder("nc")
// .longOpt("num-cells")
// .desc("The number of distinct cells to generate")
// .hasArg()
// .argName("number")
// .build();
// mainOptions.addOption(numCells);
// Option cdr1Freq = Option.builder("d")
// .longOpt("peptide-diversity-factor")
// .hasArg()
// .argName("number")
// .desc("Number of distinct CDR3s for every CDR1")
// .build();
// mainOptions.addOption(cdr1Freq);
// //Option cellOutput = (Option) outputFile.clone();
// //cellOutput.setRequired(true);
// //mainOptions.addOption(cellOutput);
//
// //Options plateOptions = new Options();
// Option inputCells = Option.builder("c")
// .longOpt("cell-file")
// .hasArg()
// .argName("file")
// .desc("The cell sample file used for filling wells")
// .build();
// mainOptions.addOption(inputCells);
// Option numWells = Option.builder("w")
// .longOpt("num-wells")
// .hasArg()
// .argName("number")
// .desc("The number of wells on each plate")
// .build();
// mainOptions.addOption(numWells);
// Option numPlates = Option.builder("np")
// .longOpt("num-plates")
// .hasArg()
// .argName("number")
// .desc("The number of plate files to output")
// .build();
// mainOptions.addOption(numPlates);
// //Option plateOutput = (Option) outputFile.clone();
// //plateOutput.setRequired(true);
// //plateOutput.setDescription("Prefix for plate output filenames");
// //mainOptions.addOption(plateOutput);
// Option plateErr = Option.builder("err")
// .longOpt("drop-out-rate")
// .hasArg()
// .argName("number")
// .desc("Well drop-out rate. (Probability between 0 and 1)")
// .build();
// mainOptions.addOption(plateErr);
// Option plateConcentrations = Option.builder("t")
// .longOpt("t-cells-per-well")
// .hasArgs()
// .argName("number 1, number 2, ...")
// .desc("Number of T cells per well for each plate section")
// .build();
// mainOptions.addOption(plateConcentrations);
//
////different distributions, mutually exclusive
// OptionGroup plateDistributions = new OptionGroup();
// Option plateExp = Option.builder("exponential")
// .desc("Sample from distinct cells with exponential frequency distribution")
// .build();
// plateDistributions.addOption(plateExp);
// Option plateGaussian = Option.builder("gaussian")
// .desc("Sample from distinct cells with gaussain frequency distribution")
// .build();
// plateDistributions.addOption(plateGaussian);
// Option platePoisson = Option.builder("poisson")
// .desc("Sample from distinct cells with poisson frequency distribution")
// .build();
// plateDistributions.addOption(platePoisson);
// mainOptions.addOptionGroup(plateDistributions);
//
// Option plateStdDev = Option.builder("stddev")
// .desc("Standard deviation for gaussian distribution")
// .hasArg()
// .argName("number")
// .build();
// mainOptions.addOption(plateStdDev);
//
// Option plateLambda = Option.builder("lambda")
// .desc("Lambda for exponential distribution")
// .hasArg()
// .argName("number")
// .build();
// mainOptions.addOption(plateLambda);
//
//
//
////
//// String cellFile, String filename, Double stdDev,
//// Integer numWells, Integer numSections,
//// Integer[] concentrations, Double dropOutRate
////
//
// //Options matchOptions = new Options();
// inputCells.setDescription("The cell sample file to be used for matching.");
// mainOptions.addOption(inputCells);
// Option lowThresh = Option.builder("low")
// .longOpt("low-threshold")
// .hasArg()
// .argName("number")
// .desc("Sets the minimum occupancy overlap to attempt matching")
// .build();
// mainOptions.addOption(lowThresh);
// Option highThresh = Option.builder("high")
// .longOpt("high-threshold")
// .hasArg()
// .argName("number")
// .desc("Sets the maximum occupancy overlap to attempt matching")
// .build();
// mainOptions.addOption(highThresh);
// Option occDiff = Option.builder("occdiff")
// .longOpt("occupancy-difference")
// .hasArg()
// .argName("Number")
// .desc("Maximum difference in alpha/beta occupancy to attempt matching")
// .build();
// mainOptions.addOption(occDiff);
// Option overlapPer = Option.builder("ovper")
// .longOpt("overlap-percent")
// .hasArg()
// .argName("Percent")
// .desc("Minimum overlap percent to attempt matching (0 -100)")
// .build();
// mainOptions.addOption(overlapPer);
// Option inputPlates = Option.builder("p")
// .longOpt("plate-files")
// .hasArgs()
// .desc("Plate files to match")
// .build();
// mainOptions.addOption(inputPlates);
//
//
//
// CommandLineParser parser = new DefaultParser();
// try {
// CommandLine line = parser.parse(mainOptions, args);
// if(line.hasOption("match")){
// //line = parser.parse(mainOptions, args);
// String cellFile = line.getOptionValue("c");
// Integer lowThreshold = Integer.valueOf(line.getOptionValue(lowThresh));
// Integer highThreshold = Integer.valueOf(line.getOptionValue(highThresh));
// Integer occupancyDifference = Integer.valueOf(line.getOptionValue(occDiff));
// Integer overlapPercent = Integer.valueOf(line.getOptionValue(overlapPer));
// for(String plate: line.getOptionValues("p")) {
// matchCDR3s(cellFile, plate, lowThreshold, highThreshold, occupancyDifference, overlapPercent);
// }
// }
// else if(line.hasOption("cells")){
// //line = parser.parse(mainOptions, args);
// String filename = line.getOptionValue("o");
// Integer numDistCells = Integer.valueOf(line.getOptionValue("nc"));
// Integer freq = Integer.valueOf(line.getOptionValue("d"));
// makeCells(filename, numDistCells, freq);
// }
// else if(line.hasOption("plates")){
// //line = parser.parse(mainOptions, args);
// String cellFile = line.getOptionValue("c");
// String filenamePrefix = line.getOptionValue("o");
// Integer numWellsOnPlate = Integer.valueOf(line.getOptionValue("w"));
// Integer numPlatesToMake = Integer.valueOf(line.getOptionValue("np"));
// String[] concentrationsToUseString = line.getOptionValues("t");
// Integer numSections = concentrationsToUseString.length;
//
// Integer[] concentrationsToUse = new Integer[numSections];
// for(int i = 0; i <numSections; i++){
// concentrationsToUse[i] = Integer.valueOf(concentrationsToUseString[i]);
// }
// Double dropOutRate = Double.valueOf(line.getOptionValue("err"));
// if(line.hasOption("exponential")){
// Double lambda = Double.valueOf(line.getOptionValue("lambda"));
// for(int i = 1; i <= numPlatesToMake; i++){
// makePlateExp(cellFile, filenamePrefix + i, lambda, numWellsOnPlate,
// concentrationsToUse,dropOutRate);
// }
// }
// else if(line.hasOption("gaussian")){
// Double stdDev = Double.valueOf(line.getOptionValue("std-dev"));
// for(int i = 1; i <= numPlatesToMake; i++){
// makePlate(cellFile, filenamePrefix + i, stdDev, numWellsOnPlate,
// concentrationsToUse,dropOutRate);
// }
//
// }
// else if(line.hasOption("poisson")){
// for(int i = 1; i <= numPlatesToMake; i++){
// makePlatePoisson(cellFile, filenamePrefix + i, numWellsOnPlate,
// concentrationsToUse,dropOutRate);
// }
// }
// }
// }
// catch (ParseException exp) {
// System.err.println("Parsing failed. Reason: " + exp.getMessage());
// }
// }
// else {
while (!quit) {
System.out.println();
System.out.println("--------BiGPairSEQ SIMULATOR--------");
System.out.println("ALPHA/BETA T CELL RECEPTOR MATCHING");
System.out.println(" USING WEIGHTED BIPARTITE GRAPHS ");
System.out.println("------------------------------------");
System.out.println("Please select an option:");
System.out.println("1) Generate a population of distinct cells");
System.out.println("2) Generate a sample plate of T cells");
System.out.println("3) Generate CDR3 alpha/beta occupancy data and overlap graph");
System.out.println("4) Simulate bipartite graph CDR3 alpha/beta matching (BiGpairSEQ)");
//Need to re-do the CDR3/CDR1 matching to correspond to new pattern
//System.out.println("5) Generate CDR3/CDR1 occupancy graph");
//System.out.println("6) Simulate CDR3/CDR1 T cell matching");
System.out.println("9) About/Acknowledgments");
System.out.println("0) Exit");
try {
input = sc.nextInt();
switch (input) {
case 1 -> makeCells();
case 2 -> makePlate();
case 3 -> makeCDR3Graph();
case 4 -> matchCDR3s();
//case 6 -> matchCellsCDR1();
case 9 -> acknowledge();
case 0 -> quit = true;
default -> throw new InputMismatchException("Invalid input.");
}
} catch (InputMismatchException | IOException ex) {
System.out.println(ex);
sc.next();
}
}
sc.close();
// }
}
private static void makeCells() {
String filename = null;
Integer numCells = 0;
Integer cdr1Freq = 1;
try {
System.out.println("\nSimulated T-Cells consist of integer values representing:\n" +
"* a pair of alpha and beta CDR3 peptides (unique within simulated population)\n" +
"* a pair of alpha and beta CDR1 peptides (not necessarily unique).");
System.out.println("\nThe cells will be written to a CSV file.");
System.out.print("Please enter a file name: ");
filename = sc.next();
System.out.println("\nCDR3 sequences are more diverse than CDR1 sequences.");
System.out.println("Please enter the factor by which distinct CDR3s outnumber CDR1s: ");
cdr1Freq = sc.nextInt();
System.out.print("\nPlease enter the number of T-cells to generate: ");
numCells = sc.nextInt();
if(numCells <= 0){
throw new InputMismatchException("Number of cells must be a positive integer.");
}
} catch (InputMismatchException ex) {
System.out.println(ex);
sc.next();
}
CellSample sample = Simulator.generateCellSample(numCells, cdr1Freq);
assert filename != null;
CellFileWriter writer = new CellFileWriter(filename, sample);
writer.writeCellsToFile();
System.gc();
}
// //for calling from command line
// private static void makeCells(String filename, Integer numCells, Integer cdr1Freq){
// CellSample sample = Simulator.generateCellSample(numCells, cdr1Freq);
// CellFileWriter writer = new CellFileWriter(filename, sample);
// writer.writeCellsToFile();
// }
//
// private static void makePlateExp(String cellFile, String filename, Double lambda,
// Integer numWells, Integer[] concentrations, Double dropOutRate){
// CellFileReader cellReader = new CellFileReader(cellFile);
// Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
// samplePlate.fillWellsExponential(cellReader.getFilename(), cellReader.getCells(), lambda);
// PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
// writer.writePlateFile();
// }
//
// private static void makePlatePoisson(String cellFile, String filename, Integer numWells,
// Integer[] concentrations, Double dropOutRate){
// CellFileReader cellReader = new CellFileReader(cellFile);
// Double stdDev = Math.sqrt(cellReader.getCellCount());
// Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
// samplePlate.fillWells(cellReader.getFilename(), cellReader.getCells(), stdDev);
// PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
// writer.writePlateFile();
// }
//
// private static void makePlate(String cellFile, String filename, Double stdDev,
// Integer numWells, Integer[] concentrations, Double dropOutRate){
// CellFileReader cellReader = new CellFileReader(cellFile);
// Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
// samplePlate.fillWells(cellReader.getFilename(), cellReader.getCells(), stdDev);
// PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
// writer.writePlateFile();
// }
//Output a CSV of sample plate
private static void makePlate() {
String cellFile = null;
String filename = null;
Double stdDev = 0.0;
Integer numWells = 0;
Integer numSections;
Integer[] concentrations = {1};
Double dropOutRate = 0.0;
boolean poisson = false;
boolean exponential = false;
double lambda = 1.5;
try {
System.out.println("\nSimulated sample plates consist of:");
System.out.println("* a number of wells");
System.out.println(" * separated into one or more sections");
System.out.println(" * each of which has a set quantity of cells per well");
System.out.println(" * selected from a statistical distribution of distinct cells");
System.out.println(" * with a set dropout rate for individual sequences within a cell");
System.out.println("\nMaking a sample plate requires a population of distinct cells");
System.out.print("Please enter name of an existing cell sample file: ");
cellFile = sc.next();
System.out.println("\nThe sample plate will be written to a CSV file");
System.out.print("Please enter a name for the output file: ");
filename = sc.next();
System.out.println("\nSelect T-cell frequency distribution function");
System.out.println("1) Poisson");
System.out.println("2) Gaussian");
System.out.println("3) Exponential");
System.out.println("(Note: approximate distribution in original paper is exponential, lambda = 0.6)");
System.out.println("(lambda value approximated from slope of log-log graph in figure 4c)");
System.out.println("(Note: wider distributions are more memory intensive to match)");
System.out.print("Enter selection value: ");
input = sc.nextInt();
switch (input) {
case 1 -> poisson = true;
case 2 -> {
System.out.println("How many distinct T-cells within one standard deviation of peak frequency?");
System.out.println("(Note: wider distributions are more memory intensive to match)");
stdDev = sc.nextDouble();
if (stdDev <= 0.0) {
throw new InputMismatchException("Value must be positive.");
}
}
case 3 -> {
exponential = true;
System.out.println("Please enter lambda value for exponential distribution.");
lambda = sc.nextDouble();
if (lambda <= 0.0) {
throw new InputMismatchException("Value must be positive.");
}
}
default -> {
System.out.println("Invalid input. Defaulting to exponential.");
exponential = true;
}
}
System.out.print("\nNumber of wells on plate: ");
numWells = sc.nextInt();
if(numWells < 1){
throw new InputMismatchException("No wells on plate");
}
System.out.println("\nThe plate can be evenly sectioned to allow multiple concentrations of T-cells/well");
System.out.println("How many sections would you like to make (minimum 1)?");
numSections = sc.nextInt();
if(numSections < 1) {
throw new InputMismatchException("Too few sections.");
}
else if (numSections > numWells) {
throw new InputMismatchException("Cannot have more sections than wells.");
}
int i = 1;
concentrations = new Integer[numSections];
while(numSections > 0) {
System.out.print("Enter number of T-cells per well in section " + i +": ");
concentrations[i - 1] = sc.nextInt();
i++;
numSections--;
}
System.out.println("\nErrors in amplification can induce a well dropout rate for sequences");
System.out.print("Enter well dropout rate (0.0 to 1.0): ");
dropOutRate = sc.nextDouble();
if(dropOutRate < 0.0 || dropOutRate > 1.0) {
throw new InputMismatchException("The well dropout rate must be in the range [0.0, 1.0]");
}
}catch(InputMismatchException ex){
System.out.println(ex);
sc.next();
}
System.out.println("Reading Cell Sample file: " + cellFile);
assert cellFile != null;
CellFileReader cellReader = new CellFileReader(cellFile);
if(exponential){
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
samplePlate.fillWellsExponential(cellReader.getFilename(), cellReader.getCells(), lambda);
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
writer.writePlateFile();
}
else {
if (poisson) {
stdDev = Math.sqrt(cellReader.getCellCount()); //gaussian with square root of elements approximates poisson
}
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
samplePlate.fillWells(cellReader.getFilename(), cellReader.getCells(), stdDev);
assert filename != null;
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
System.out.println("Writing Sample Plate to file");
writer.writePlateFile();
System.out.println("Sample Plate written to file: " + filename);
System.gc();
}
}
//Output serialized binary of GraphAndMapData object
private static void makeCDR3Graph() {
String filename = null;
String cellFile = null;
String plateFile = null;
try {
String str = "\nGenerating bipartite weighted graph encoding occupancy overlap data ";
str = str.concat("\nrequires a cell sample file and a sample plate file.");
System.out.println(str);
System.out.print("\nPlease enter name of an existing cell sample file: ");
cellFile = sc.next();
System.out.print("\nPlease enter name of an existing sample plate file: ");
plateFile = sc.next();
System.out.println("\nThe graph and occupancy data will be written to a serialized binary file.");
System.out.print("Please enter a name for the output file: ");
filename = sc.next();
} catch (InputMismatchException ex) {
System.out.println(ex);
sc.next();
}
System.out.println("Reading Cell Sample file: " + cellFile);
assert cellFile != null;
CellFileReader cellReader = new CellFileReader(cellFile);
System.out.println("Reading Sample Plate file: " + plateFile);
assert plateFile != null;
PlateFileReader plateReader = new PlateFileReader(plateFile);
Plate plate = new Plate(plateReader.getFilename(), plateReader.getWells());
if (cellReader.getCells().size() == 0){
System.out.println("No cell sample found.");
System.out.println("Returning to main menu.");
}
else if(plate.getWells().size() == 0 || plate.getConcentrations().length == 0){
System.out.println("No sample plate found.");
System.out.println("Returning to main menu.");
}
else{
List<Integer[]> cells = cellReader.getCells();
GraphWithMapData data = Simulator.makeGraph(cells, plate, true);
assert filename != null;
GraphDataObjectWriter dataWriter = new GraphDataObjectWriter(filename, data);
System.out.println("Writing graph and occupancy data to file. This may take some time.");
System.out.println("File I/O time is not included in results.");
dataWriter.writeDataToFile();
System.out.println("Graph and Data file written to: " + filename);
System.gc();
}
}
//Simulate matching and output CSV file of results
private static void matchCDR3s() throws IOException {
String filename = null;
String dataFilename = null;
Integer lowThreshold = 0;
Integer highThreshold = Integer.MAX_VALUE;
Integer maxOccupancyDiff = Integer.MAX_VALUE;
Integer minOverlapPercent = 0;
try {
System.out.println("\nBiGpairSEQ simulation requires an occupancy data and overlap graph file");
System.out.println("Please enter name of an existing graph and occupancy data file: ");
dataFilename = sc.next();
System.out.println("The matching results will be written to a file.");
System.out.print("Please enter a name for the output file: ");
filename = sc.next();
System.out.println("\nWhat is the minimum number of CDR3 alpha/beta overlap wells to attempt matching?");
lowThreshold = sc.nextInt();
if(lowThreshold < 1){
throw new InputMismatchException("Minimum value for low threshold set to 1");
}
System.out.println("\nWhat is the maximum number of CDR3 alpha/beta overlap wells to attempt matching?");
highThreshold = sc.nextInt();
System.out.println("\nWhat is the maximum difference in alpha/beta occupancy to attempt matching?");
maxOccupancyDiff = sc.nextInt();
System.out.println("\nWell overlap percentage = pair overlap / sequence occupancy");
System.out.println("What is the minimum well overlap percentage to attempt matching? (0 to 100)");
minOverlapPercent = sc.nextInt();
if (minOverlapPercent < 0 || minOverlapPercent > 100) {
throw new InputMismatchException("Value outside range. Minimum percent set to 0");
}
} catch (InputMismatchException ex) {
System.out.println(ex);
sc.next();
}
//read object data from file
System.out.println("Reading graph data from file. This may take some time");
System.out.println("File I/O time is not included in results");
assert dataFilename != null;
GraphDataObjectReader dataReader = new GraphDataObjectReader(dataFilename);
GraphWithMapData data = dataReader.getData();
//set source file name
data.setSourceFilename(dataFilename);
//simulate matching
MatchingResult results = Simulator.matchCDR3s(data, dataFilename, lowThreshold, highThreshold, maxOccupancyDiff,
minOverlapPercent, true);
//write results to file
assert filename != null;
MatchingFileWriter writer = new MatchingFileWriter(filename, results);
System.out.println("Writing results to file");
writer.writeResultsToFile();
System.out.println("Results written to file: " + filename);
System.gc();
}
///////
//Rewrite this to fit new matchCDR3 method with file I/O
///////
// public static void matchCellsCDR1(){
// /*
// The idea here is that we'll get the CDR3 alpha/beta matches first. Then we'll try to match CDR3s to CDR1s by
// looking at the top two matches for each CDR3. If CDR3s in the same cell simply swap CDR1s, we assume a correct
// match
// */
// String filename = null;
// String preliminaryResultsFilename = null;
// String cellFile = null;
// String plateFile = null;
// Integer lowThresholdCDR3 = 0;
// Integer highThresholdCDR3 = Integer.MAX_VALUE;
// Integer maxOccupancyDiffCDR3 = 96; //no filtering if max difference is all wells by default
// Integer minOverlapPercentCDR3 = 0; //no filtering if min percentage is zero by default
// Integer lowThresholdCDR1 = 0;
// Integer highThresholdCDR1 = Integer.MAX_VALUE;
// boolean outputCDR3Matches = false;
// try {
// System.out.println("\nSimulated experiment requires a cell sample file and a sample plate file.");
// System.out.print("Please enter name of an existing cell sample file: ");
// cellFile = sc.next();
// System.out.print("Please enter name of an existing sample plate file: ");
// plateFile = sc.next();
// System.out.println("The matching results will be written to a file.");
// System.out.print("Please enter a name for the output file: ");
// filename = sc.next();
// System.out.println("What is the minimum number of CDR3 alpha/beta overlap wells to attempt matching?");
// lowThresholdCDR3 = sc.nextInt();
// if(lowThresholdCDR3 < 1){
// throw new InputMismatchException("Minimum value for low threshold is 1");
// }
// System.out.println("What is the maximum number of CDR3 alpha/beta overlap wells to attempt matching?");
// highThresholdCDR3 = sc.nextInt();
// System.out.println("What is the maximum difference in CDR3 alpha/beta occupancy to attempt matching?");
// maxOccupancyDiffCDR3 = sc.nextInt();
// System.out.println("What is the minimum CDR3 overlap percentage to attempt matching? (0 - 100)");
// minOverlapPercentCDR3 = sc.nextInt();
// if (minOverlapPercentCDR3 < 0 || minOverlapPercentCDR3 > 100) {
// throw new InputMismatchException("Value outside range. Minimum percent set to 0");
// }
// System.out.println("What is the minimum number of CDR3/CDR1 overlap wells to attempt matching?");
// lowThresholdCDR1 = sc.nextInt();
// if(lowThresholdCDR1 < 1){
// throw new InputMismatchException("Minimum value for low threshold is 1");
// }
// System.out.println("What is the maximum number of CDR3/CDR1 overlap wells to attempt matching?");
// highThresholdCDR1 = sc.nextInt();
// System.out.println("Matching CDR3s to CDR1s requires first matching CDR3 alpha/betas.");
// System.out.println("Output a file for CDR3 alpha/beta match results as well?");
// System.out.print("Please enter y/n: ");
// String ans = sc.next();
// Pattern pattern = Pattern.compile("(?:yes|y)", Pattern.CASE_INSENSITIVE);
// Matcher matcher = pattern.matcher(ans);
// if(matcher.matches()){
// outputCDR3Matches = true;
// System.out.println("Please enter filename for CDR3 alpha/beta match results");
// preliminaryResultsFilename = sc.next();
// System.out.println("CDR3 alpha/beta matches will be output to file");
// }
// else{
// System.out.println("CDR3 alpha/beta matches will not be output to file");
// }
// } catch (InputMismatchException ex) {
// System.out.println(ex);
// sc.next();
// }
// CellFileReader cellReader = new CellFileReader(cellFile);
// PlateFileReader plateReader = new PlateFileReader(plateFile);
// Plate plate = new Plate(plateReader.getFilename(), plateReader.getWells());
// if (cellReader.getCells().size() == 0){
// System.out.println("No cell sample found.");
// System.out.println("Returning to main menu.");
// }
// else if(plate.getWells().size() == 0){
// System.out.println("No sample plate found.");
// System.out.println("Returning to main menu.");
//
// }
// else{
// if(highThresholdCDR3 >= plate.getSize()){
// highThresholdCDR3 = plate.getSize() - 1;
// }
// if(highThresholdCDR1 >= plate.getSize()){
// highThresholdCDR1 = plate.getSize() - 1;
// }
// List<Integer[]> cells = cellReader.getCells();
// MatchingResult preliminaryResults = Simulator.matchCDR3s(cells, plate, lowThresholdCDR3, highThresholdCDR3,
// maxOccupancyDiffCDR3, minOverlapPercentCDR3, true);
// MatchingResult[] results = Simulator.matchCDR1s(cells, plate, lowThresholdCDR1,
// highThresholdCDR1, preliminaryResults);
// MatchingFileWriter writer = new MatchingFileWriter(filename + "_FirstPass", results[0]);
// writer.writeResultsToFile();
// writer = new MatchingFileWriter(filename + "_SecondPass", results[1]);
// writer.writeResultsToFile();
// if(outputCDR3Matches){
// writer = new MatchingFileWriter(preliminaryResultsFilename, preliminaryResults);
// writer.writeResultsToFile();
// }
// }
// }
private static void acknowledge(){
System.out.println("This program simulates BiGpairSEQ, a graph theory based adaptation");
System.out.println("of the pairSEQ algorithm for pairing T cell receptor sequences.");
System.out.println();
System.out.println("For full documentation, view readme.md file distributed with this code");
System.out.println("or visit https://gitea.ejsf.synology.me/efischer/BiGpairSEQ.");
System.out.println();
System.out.println("pairSEQ citation:");
System.out.println("Howie, B., Sherwood, A. M., et. al.");
System.out.println("High-throughput pairing of T cell receptor alpha and beta sequences.");
System.out.println("Sci. Transl. Med. 7, 301ra131 (2015)");
System.out.println();
System.out.println("BiGpairSEQ_Sim by Eugene Fischer, 2021-2022");
}
}