Compare commits
223 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4099ec2623 | ||
|
|
7744586e79 | ||
|
|
83eff0d1e7 | ||
|
|
d1810c453d | ||
|
|
187401f2d6 | ||
|
|
678ce99424 | ||
|
|
c21e375303 | ||
|
|
57fe9c1619 | ||
|
|
e1888a99c6 | ||
|
|
bcf5a4c749 | ||
|
|
81d8a12765 | ||
|
|
b5c0568e22 | ||
|
|
b7597cff2a | ||
|
|
7bbeaf7dad | ||
|
|
945b967382 | ||
|
|
a43ee469ea | ||
|
|
161a52aa89 | ||
|
|
9b2ad9da09 | ||
|
|
30a3f6e33d | ||
|
|
8cc1f19da1 | ||
|
|
3efa5c26d8 | ||
|
|
e686d4957b | ||
|
|
fbc0496675 | ||
|
|
0071cafbbd | ||
|
|
3d302cf8ad | ||
|
|
5f5d77b0a4 | ||
|
|
af32be85ee | ||
|
|
58cdf9ae93 | ||
|
|
202ad4c834 | ||
|
|
96d49d0034 | ||
|
|
d8e5f7ece0 | ||
|
|
9c81d919b4 | ||
|
|
70b08e7c22 | ||
|
|
44158d264c | ||
|
|
e97c2989db | ||
|
|
f7709ada73 | ||
|
|
25b37eff48 | ||
|
|
fbbb5a8792 | ||
|
|
4b9d7f8494 | ||
|
|
0de12a3a12 | ||
|
|
3c2ec9002e | ||
|
|
bcf3af5a83 | ||
|
|
fcca22a2f0 | ||
|
|
910de0ce9d | ||
|
|
ef349ea5f6 | ||
|
|
174db66c46 | ||
|
|
b3273855a6 | ||
|
|
51c1bc2551 | ||
|
|
f7d522e95d | ||
|
|
5f0c089b0a | ||
|
|
d3066095d9 | ||
|
|
55a5d9a892 | ||
|
|
49708f2f8a | ||
|
|
c7934ca498 | ||
|
|
8f0ed91cb7 | ||
|
|
40bc2ce88d | ||
|
|
a5a17d1f76 | ||
|
|
0f3ab0fdd7 | ||
|
|
01596ef43a | ||
|
|
cda25a2c62 | ||
|
|
bde6da3076 | ||
|
|
2eede214c0 | ||
|
|
98ce708825 | ||
|
|
e7e85a4542 | ||
|
|
c0dd2d31f2 | ||
|
|
cf103c5223 | ||
|
|
26f66fe139 | ||
|
|
89295777ef | ||
|
|
99c92e6eb5 | ||
|
|
b82176517c | ||
|
|
0657db5653 | ||
|
|
9f0ac227e2 | ||
|
|
54896bc47f | ||
|
|
b19a4d37c2 | ||
|
|
457d643477 | ||
|
|
593dd6c60f | ||
|
|
b8aeeb988f | ||
|
|
b9b13fb75e | ||
|
|
289220e0d0 | ||
|
|
19badac92b | ||
|
|
633334a1b8 | ||
|
|
e308e47578 | ||
|
|
133984276f | ||
|
|
ec6713a1c0 | ||
| 097590cf21 | |||
|
|
f1e4c4f194 | ||
|
|
b6218c3ed3 | ||
|
|
756e5572b9 | ||
|
|
c30167d5ec | ||
|
|
a19525f5bb | ||
|
|
e5803defa3 | ||
|
|
34dc2a5721 | ||
|
|
fd106a0d73 | ||
|
|
22faad3414 | ||
|
|
0b36e2b742 | ||
|
|
9dacd8cd34 | ||
|
|
89687fa849 | ||
|
|
fb443fe958 | ||
|
|
adebe1542e | ||
|
|
882fbfffc6 | ||
|
|
a88cfb8b0d | ||
|
|
deed98e79d | ||
|
|
1a35600f50 | ||
|
|
856063529b | ||
|
|
b7c86f20b3 | ||
|
|
3a47efd361 | ||
|
|
58bb04c431 | ||
|
|
610da68262 | ||
|
|
9973473cc6 | ||
|
|
8781afd74c | ||
|
|
88b6c79caa | ||
|
|
35a519d499 | ||
|
|
5bd1e568a6 | ||
|
|
4ad1979c18 | ||
|
|
423c9d5c93 | ||
|
|
7c3c95ab4b | ||
|
|
d71a99555c | ||
|
|
2bf2a9f5f7 | ||
|
|
810abdb705 | ||
|
|
f7b3c133bf | ||
|
|
14fcfe1ff3 | ||
|
|
70fec95a00 | ||
|
|
077af3b46e | ||
|
|
db99c74810 | ||
|
|
13a1af1f71 | ||
|
|
199c81f983 | ||
|
|
19a2a35f07 | ||
|
|
36c628cde5 | ||
|
|
1ddac63b0a | ||
|
|
e795b4cdd0 | ||
|
|
60cf6775c2 | ||
|
|
8a8c89c9ba | ||
|
|
86371668d5 | ||
|
|
d81ab25a68 | ||
|
|
02c8e6aacb | ||
|
|
f84dfb2b4b | ||
|
|
184278b72e | ||
|
|
489369f533 | ||
|
|
fbee591273 | ||
|
|
603a999b59 | ||
|
|
c3df4b12ab | ||
|
|
d1a56c3578 | ||
|
|
16daf02dd6 | ||
|
|
04a077da2e | ||
|
|
740835f814 | ||
|
|
8a77d53f1f | ||
|
|
58fa140ee5 | ||
|
|
475bbf3107 | ||
|
|
4f2fa4cbbe | ||
|
|
58d418e44b | ||
|
|
1971a96467 | ||
|
|
e699795521 | ||
|
|
bd6d010b0b | ||
|
|
61d1eb3eb1 | ||
|
|
cb41b45204 | ||
|
|
a84d2e1bfe | ||
|
|
7b61d2c0d7 | ||
|
|
56454417c0 | ||
|
|
8ee1c5903e | ||
|
|
5c03909a11 | ||
|
|
e4e5a1f979 | ||
|
|
73c83bf35d | ||
|
|
06e72314b0 | ||
|
|
63317f2aa0 | ||
|
|
a054c0c20a | ||
|
|
29b844afd2 | ||
|
|
dea4972927 | ||
|
|
9ae38bf247 | ||
|
|
3ba305abdb | ||
|
|
3707923398 | ||
|
|
cf771ce574 | ||
| f980722b56 | |||
| 1df86f01df | |||
| 96ba57d653 | |||
| b602fb02f1 | |||
| 325e1ebe2b | |||
| df047267ee | |||
| 03e8d31210 | |||
| 582dc3ef40 | |||
| 4c872ed48e | |||
| 3fc39302c7 | |||
| 578bdc0fbf | |||
| 8275cf7740 | |||
| 64209691f0 | |||
| 1886800873 | |||
| bedf0894bc | |||
| 2ac3451842 | |||
| 67ec3f3764 | |||
| b5a8b7e2d5 | |||
| 9fb3095f0f | |||
| 25acf920c2 | |||
| f301327693 | |||
| e04d2d6777 | |||
| 3e41afaa64 | |||
| bc5d67680d | |||
| f2347e8fc2 | |||
| c8364d8a6e | |||
| 6f5afbc6ec | |||
| fb4d22e7a4 | |||
| e10350c214 | |||
| b1155f8100 | |||
| 12b003a69f | |||
| 32c5bcaaff | |||
| 2485ac4cf6 | |||
| 05556bce0c | |||
| a822f69ea4 | |||
| 3d1f8668ee | |||
| 40c743308b | |||
| 5246cc4a0c | |||
| a5f7c0641d | |||
| 8ebfc1469f | |||
| b53f5f1cc0 | |||
| 974d2d650c | |||
| 6b5837e6ce | |||
| 817fe51708 | |||
| 1ea68045ce | |||
| 75b2aa9553 | |||
| b3dc10f287 | |||
| fb8d8d8785 | |||
| ab437512e9 | |||
| 7b03a3cce8 | |||
| f032d3e852 | |||
| b604b1d3cd |
1
.idea/.name
generated
Normal file
1
.idea/.name
generated
Normal file
@@ -0,0 +1 @@
|
||||
BiGpairSEQ
|
||||
27
.idea/artifacts/BiGpairSEQ_Sim_jar.xml
generated
27
.idea/artifacts/BiGpairSEQ_Sim_jar.xml
generated
@@ -1,16 +1,27 @@
|
||||
<component name="ArtifactManager">
|
||||
<artifact type="jar" build-on-make="true" name="BiGpairSEQ_Sim:jar">
|
||||
<artifact type="jar" name="BiGpairSEQ_Sim:jar">
|
||||
<output-path>$PROJECT_DIR$/out/artifacts/BiGpairSEQ_Sim_jar</output-path>
|
||||
<root id="archive" name="BiGpairSEQ_Sim.jar">
|
||||
<element id="directory" name="META-INF">
|
||||
<element id="file-copy" path="$PROJECT_DIR$/src/main/java/META-INF/MANIFEST.MF" />
|
||||
<element id="file-copy" path="$PROJECT_DIR$/META-INF/MANIFEST.MF" />
|
||||
</element>
|
||||
<element id="module-output" name="BigPairSEQ" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-core/1.5.1/jgrapht-core-1.5.1.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.13/jheaps-0.13.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/commons-cli/commons-cli/1.5.0/commons-cli-1.5.0.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-csv/1.9.0/commons-csv-1.9.0.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jetbrains/annotations/23.0.0/annotations-23.0.0.jar" path-in-jar="/" />
|
||||
<element id="module-output" name="BiGpairSEQ_Sim" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-core/1.5.2/jgrapht-core-1.5.2.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-rng-sampling/1.6/commons-rng-sampling-1.6.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-csv/1.14.0/commons-csv-1.14.0.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jetbrains/annotations/26.0.2/annotations-26.0.2.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-io/1.5.2/jgrapht-io-1.5.2.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-rng-simple/1.6/commons-rng-simple-1.6.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/commons-io/commons-io/2.18.0/commons-io-2.18.0.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-rng-core/1.6/commons-rng-core-1.6.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/commons-codec/commons-codec/1.18.0/commons-codec-1.18.0.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-rng-client-api/1.6/commons-rng-client-api-1.6.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/commons-cli/commons-cli/1.9.0/commons-cli-1.9.0.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-lang3/3.12.0/commons-lang3-3.12.0.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/antlr/antlr4-runtime/4.12.0/antlr4-runtime-4.12.0.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apfloat/apfloat/1.10.1/apfloat-1.10.1.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-text/1.10.0/commons-text-1.10.0.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.14/jheaps-0.14.jar" path-in-jar="/" />
|
||||
</root>
|
||||
</artifact>
|
||||
</component>
|
||||
1
.idea/compiler.xml
generated
1
.idea/compiler.xml
generated
@@ -7,6 +7,7 @@
|
||||
<sourceTestOutputDir name="target/generated-test-sources/test-annotations" />
|
||||
<outputRelativeToContentRoot value="true" />
|
||||
<module name="BigPairSEQ" />
|
||||
<module name="BiGpairSEQ_Sim" />
|
||||
</profile>
|
||||
</annotationProcessing>
|
||||
</component>
|
||||
|
||||
25
.idea/jarRepositories.xml
generated
25
.idea/jarRepositories.xml
generated
@@ -1,20 +1,35 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="RemoteRepositoriesConfiguration">
|
||||
<remote-repository>
|
||||
<option name="id" value="my-internal-site" />
|
||||
<option name="name" value="my-internal-site" />
|
||||
<option name="url" value="https://myserver/repo" />
|
||||
</remote-repository>
|
||||
<remote-repository>
|
||||
<option name="id" value="central" />
|
||||
<option name="name" value="Central Repository" />
|
||||
<option name="url" value="https://repo1.maven.org/maven2" />
|
||||
</remote-repository>
|
||||
<remote-repository>
|
||||
<option name="id" value="central repo" />
|
||||
<option name="name" value="central repo" />
|
||||
<option name="url" value="https://repo1.maven.org/maven2/" />
|
||||
</remote-repository>
|
||||
<remote-repository>
|
||||
<option name="id" value="central" />
|
||||
<option name="name" value="Central Repository" />
|
||||
<option name="url" value="https://repo.maven.apache.org/maven2" />
|
||||
</remote-repository>
|
||||
<remote-repository>
|
||||
<option name="id" value="central" />
|
||||
<option name="name" value="Maven Central repository" />
|
||||
<option name="url" value="https://repo1.maven.org/maven2" />
|
||||
</remote-repository>
|
||||
<remote-repository>
|
||||
<option name="id" value="jboss.community" />
|
||||
<option name="name" value="JBoss Community repository" />
|
||||
<option name="url" value="https://repository.jboss.org/nexus/content/repositories/public/" />
|
||||
</remote-repository>
|
||||
<remote-repository>
|
||||
<option name="id" value="34d16bdc-85f0-48ee-8e8b-144091765be1" />
|
||||
<option name="name" value="34d16bdc-85f0-48ee-8e8b-144091765be1" />
|
||||
<option name="url" value="https://repository.mulesoft.org/nexus/content/repositories/public/" />
|
||||
</remote-repository>
|
||||
</component>
|
||||
</project>
|
||||
6
.idea/libraries/apache_commons_csv.xml
generated
6
.idea/libraries/apache_commons_csv.xml
generated
@@ -1,8 +1,10 @@
|
||||
<component name="libraryTable">
|
||||
<library name="apache.commons.csv" type="repository">
|
||||
<properties maven-id="org.apache.commons:commons-csv:1.9.0" />
|
||||
<properties maven-id="org.apache.commons:commons-csv:1.14.0" />
|
||||
<CLASSES>
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/apache/commons/commons-csv/1.9.0/commons-csv-1.9.0.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/apache/commons/commons-csv/1.14.0/commons-csv-1.14.0.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/commons-io/commons-io/2.18.0/commons-io-2.18.0.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/commons-codec/commons-codec/1.18.0/commons-codec-1.18.0.jar!/" />
|
||||
</CLASSES>
|
||||
<JAVADOC />
|
||||
<SOURCES />
|
||||
|
||||
4
.idea/libraries/commons_cli.xml
generated
4
.idea/libraries/commons_cli.xml
generated
@@ -1,8 +1,8 @@
|
||||
<component name="libraryTable">
|
||||
<library name="commons.cli" type="repository">
|
||||
<properties maven-id="commons-cli:commons-cli:1.5.0" />
|
||||
<properties maven-id="commons-cli:commons-cli:1.9.0" />
|
||||
<CLASSES>
|
||||
<root url="jar://$MAVEN_REPOSITORY$/commons-cli/commons-cli/1.5.0/commons-cli-1.5.0.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/commons-cli/commons-cli/1.9.0/commons-cli-1.9.0.jar!/" />
|
||||
</CLASSES>
|
||||
<JAVADOC />
|
||||
<SOURCES />
|
||||
|
||||
7
.idea/libraries/jgrapht_core.xml
generated
7
.idea/libraries/jgrapht_core.xml
generated
@@ -1,9 +1,10 @@
|
||||
<component name="libraryTable">
|
||||
<library name="jgrapht.core" type="repository">
|
||||
<properties maven-id="org.jgrapht:jgrapht-core:1.5.1" />
|
||||
<properties maven-id="org.jgrapht:jgrapht-core:1.5.2" />
|
||||
<CLASSES>
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-core/1.5.1/jgrapht-core-1.5.1.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.13/jheaps-0.13.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-core/1.5.2/jgrapht-core-1.5.2.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.14/jheaps-0.14.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/apfloat/apfloat/1.10.1/apfloat-1.10.1.jar!/" />
|
||||
</CLASSES>
|
||||
<JAVADOC />
|
||||
<SOURCES />
|
||||
|
||||
15
.idea/libraries/jgrapht_io.xml
generated
15
.idea/libraries/jgrapht_io.xml
generated
@@ -1,13 +1,14 @@
|
||||
<component name="libraryTable">
|
||||
<library name="jgrapht.io" type="repository">
|
||||
<properties maven-id="org.jgrapht:jgrapht-io:1.5.1" />
|
||||
<properties maven-id="org.jgrapht:jgrapht-io:1.5.2" />
|
||||
<CLASSES>
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-io/1.5.1/jgrapht-io-1.5.1.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-core/1.5.1/jgrapht-core-1.5.1.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.13/jheaps-0.13.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/antlr/antlr4-runtime/4.8-1/antlr4-runtime-4.8-1.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/apache/commons/commons-text/1.8/commons-text-1.8.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/apache/commons/commons-lang3/3.9/commons-lang3-3.9.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-io/1.5.2/jgrapht-io-1.5.2.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-core/1.5.2/jgrapht-core-1.5.2.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.14/jheaps-0.14.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/apfloat/apfloat/1.10.1/apfloat-1.10.1.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/antlr/antlr4-runtime/4.12.0/antlr4-runtime-4.12.0.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/apache/commons/commons-text/1.10.0/commons-text-1.10.0.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/apache/commons/commons-lang3/3.12.0/commons-lang3-3.12.0.jar!/" />
|
||||
</CLASSES>
|
||||
<JAVADOC />
|
||||
<SOURCES />
|
||||
|
||||
44
pom.xml
44
pom.xml
@@ -5,7 +5,7 @@
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
|
||||
<groupId>org.example</groupId>
|
||||
<artifactId>TCellSim</artifactId>
|
||||
<artifactId>BiGpairSEQ_Sim</artifactId>
|
||||
<version>1.0-SNAPSHOT</version>
|
||||
<build>
|
||||
<plugins>
|
||||
@@ -26,8 +26,48 @@
|
||||
<version>RELEASE</version>
|
||||
<scope>compile</scope>
|
||||
</dependency>
|
||||
<!-- https://mvnrepository.com/artifact/org.apache.commons/commons-rng-simple -->
|
||||
<dependency>
|
||||
<groupId>org.apache.commons</groupId>
|
||||
<artifactId>commons-rng-simple</artifactId>
|
||||
<version>1.6</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>org.apache.commons</groupId>
|
||||
<artifactId>commons-rng-sampling</artifactId>
|
||||
<version>1.6</version>
|
||||
</dependency>
|
||||
<!-- https://mvnrepository.com/artifact/org.apache.commons/commons-csv -->
|
||||
<dependency>
|
||||
<groupId>org.apache.commons</groupId>
|
||||
<artifactId>commons-csv</artifactId>
|
||||
<version>1.14.0</version>
|
||||
</dependency>
|
||||
<!-- https://mvnrepository.com/artifact/org.jgrapht/jgrapht-core -->
|
||||
<dependency>
|
||||
<groupId>org.jgrapht</groupId>
|
||||
<artifactId>jgrapht-core</artifactId>
|
||||
<version>1.5.2</version>
|
||||
</dependency>
|
||||
<!-- https://mvnrepository.com/artifact/org.jgrapht/jgrapht-io -->
|
||||
<dependency>
|
||||
<groupId>org.jgrapht</groupId>
|
||||
<artifactId>jgrapht-io</artifactId>
|
||||
<version>1.5.2</version>
|
||||
</dependency>
|
||||
<!-- https://mvnrepository.com/artifact/org.jheaps/jheaps -->
|
||||
<dependency>
|
||||
<groupId>org.jheaps</groupId>
|
||||
<artifactId>jheaps</artifactId>
|
||||
<version>0.14</version>
|
||||
</dependency>
|
||||
<!-- https://mvnrepository.com/artifact/commons-cli/commons-cli -->
|
||||
<dependency>
|
||||
<groupId>commons-cli</groupId>
|
||||
<artifactId>commons-cli</artifactId>
|
||||
<version>1.9.0</version>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
|
||||
<properties>
|
||||
<maven.compiler.source>11</maven.compiler.source>
|
||||
<maven.compiler.target>11</maven.compiler.target>
|
||||
|
||||
557
readme.md
557
readme.md
@@ -1,33 +1,113 @@
|
||||
# BiGpairSEQ SIMULATOR
|
||||
|
||||
## CONTENTS
|
||||
1. [ABOUT](#about)
|
||||
2. [THEORY](#theory)
|
||||
3. [THE BiGpairSEQ ALGORITHM](#the-bigpairseq-algorithm)
|
||||
4. [USAGE](#usage)
|
||||
1. [RUNNING THE PROGRAM](#running-the-program)
|
||||
2. [COMMAND LINE OPTIONS](#command-line-options)
|
||||
3. [INTERACTIVE INTERFACE](#interactive-interface)
|
||||
4. [INPUT/OUTPUT](#input-output)
|
||||
1. [Cell Sample Files](#cell-sample-files)
|
||||
2. [Sample Plate Files](#sample-plate-files)
|
||||
3. [Graph/Data Files](#graph-data-files)
|
||||
4. [Matching Results Files](#matching-results-files)
|
||||
5. [RESULTS](#results)
|
||||
1. [SAMPLE PLATES WITH VARYING NUMBERS OF CELLS PER WELL](#sample-plates-with-varying-numbers-of-cells-per-well)
|
||||
2. [SIMULATING EXPERIMENTS FROM THE 2015 pairSEQ PAPER](#simulating-experiments-from-the-2015-pairseq-paper)
|
||||
1. [EXPERIMENT 1](#experiment-1)
|
||||
2. [EXPERIMENT 3](#experiment-3)
|
||||
6. [CITATIONS](#citations)
|
||||
7. [EXTERNAL LIBRARIES USED](#external-libraries-used)
|
||||
8. [ACKNOWLEDGEMENTS](#acknowledgements)
|
||||
9. [AUTHOR](#author)
|
||||
10. [DISCLOSURE](#disclosure)
|
||||
11. [TODO](#todo)
|
||||
|
||||
## ABOUT
|
||||
|
||||
This program simulates BiGpairSEQ (Bipartite Graph pairSEQ), a graph theory-based adaptation
|
||||
of the pairSEQ algorithm (Howie, et al. 2015) for pairing T cell receptor sequences.
|
||||
of the pairSEQ algorithm ([Howie, et al. 2015](#citations)) for pairing T cell receptor sequences.
|
||||
|
||||
## THEORY
|
||||
|
||||
Unlike pairSEQ, which calculates p-values for every TCR alpha/beta overlap and compares
|
||||
against a null distribution, BiGpairSEQ does not do any statistical calculations
|
||||
directly.
|
||||
T cell receptors (TCRs) are encoded by pairs of sequences, alpha sequences (TCRAs) and beta sequences (TCRBs). These sequences
|
||||
are extremely diverse; to the first approximation, this pair of sequences uniquely identifies a line of T cells.
|
||||
|
||||
As described in the original 2015 paper, pairSEQ pairs TCRAs and TCRBs by distributing a
|
||||
sample of T cells across a 96-well sample plate, then sequencing the contents of each well. It then calculates p-values for
|
||||
every TCRA/TCRB sequence overlap and compares that against a null distribution, to find the most statistically probable pairings.
|
||||
|
||||
BiGpairSEQ uses the same fundamental idea of using occupancy overlap to pair TCR sequences, but unlike pairSEQ it
|
||||
does not require performing any statistical calculations at all. Instead, BiGpairSEQ uses graph theory methods which
|
||||
produce provably optimal solutions.
|
||||
|
||||
BiGpairSEQ creates a [weighted bipartite graph](https://en.wikipedia.org/wiki/Bipartite_graph) representing the sample plate.
|
||||
The distinct TCRA and TCRB sequences form the two sets of vertices. Every TCRA/TCRB pair that share a well
|
||||
are connected by an edge, with the edge weight set to the number of wells in which both sequences appear.
|
||||
(Sequences present in *all* wells are filtered out prior to creating the graph, as there is no signal in their occupancy pattern.)
|
||||
The problem of pairing TCRA/TCRB sequences thus reduces to the "assignment problem" of finding a maximum weight
|
||||
matching on a bipartite graph--the subset of vertex-disjoint edges whose weights sum to the maximum possible value.
|
||||
The distinct TCRA and TCRB sequences form the two sets of vertices. Every TCRA/TCRB pair that share a well on the sample plate
|
||||
are connected by an edge in the graph, with the edge weight set to the number of wells in which both sequences appear. The vertices
|
||||
themselves are labeled with the occupancy data for the individual sequences they represent, which is useful for pre-filtering
|
||||
before finding a maximum weight matching. Such a graph fully encodes the distribution data from the sample plate.
|
||||
|
||||
This is a well-studied combinatorial optimization problem, with many known solutions.
|
||||
The most efficient algorithm known to the author for maximum weight matching of a bipartite graph with strictly integral weights
|
||||
is from Duan and Su (2012). For a graph with m edges, n vertices per side, and maximum integer edge weight N,
|
||||
their algorithm runs in **O(m sqrt(n) log(N))** time. As the graph representation of a pairSEQ experiment is
|
||||
bipartite with integer weights, this algorithm is ideal for BiGpairSEQ.
|
||||
The problem of pairing TCRA/TCRB sequences thus reduces to the [assignment problem](https://en.wikipedia.org/wiki/Assignment_problem) of finding a maximum weight
|
||||
matching (MWM) on a bipartite graph--the subset of vertex-disjoint edges whose weights sum to the maximum possible value.
|
||||
|
||||
Unfortunately, it's a fairly new algorithm, and not yet implemented by the graph theory library used in this simulator.
|
||||
So this program instead uses the Fibonacci heap-based algorithm of Fredman and Tarjan (1987), which has a worst-case
|
||||
runtime of **O(n (n log(n) + m))**. The algorithm is implemented as described in Melhorn and Näher (1999).
|
||||
This is a well-studied combinatorial optimization problem, with many known algorithms that produce
|
||||
provably-optimal solutions. The most theoretically efficient algorithm known to the author for maximum weight matching of a bipartite
|
||||
graph with strictly integral weights is from [Duan and Su (2012)](#citations). For a graph with m edges, n vertices per side,
|
||||
and maximum integer edge weight N, their algorithm runs in **O(m sqrt(n) log(N))** time. As the graph representation of
|
||||
a pairSEQ experiment is bipartite with integer weights, this algorithm seems ideal for BiGpairSEQ. Unfortunately, it is not
|
||||
implemented by the graph theory library used in this simulator (JGraphT), and the author has not yet had time to write a
|
||||
full, optimized implementation himself for testing.
|
||||
|
||||
So this program instead uses the [Fibonacci heap](https://en.wikipedia.org/wiki/Fibonacci_heap) based algorithm of Fredman and Tarjan (1987) (essentially
|
||||
[the Hungarian algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) augmented with a more efficient priority queue) which has a worst-case
|
||||
runtime of **O(n (n log(n) + m))**. The algorithm is implemented as described in [Melhorn and Näher (1999)](#citations). (The simulator can use either a
|
||||
Fibonacci heap or a [pairing heap](https://en.wikipedia.org/wiki/Pairing_heap) as desired. By default, a pairing heap is used,
|
||||
as in practice they often offer superior performance.)
|
||||
|
||||
One possible advantage of this less efficient algorithm is that the Hungarian algorithm and its variations work with both the balanced and the unbalanced assignment problem
|
||||
(that is, cases where both sides of the bipartite graph have the same number of vertices and those in which they don't.)
|
||||
Many other MWM algorithms only work for the balanced assignment problem. While pairSEQ-style experiments should theoretically
|
||||
be balanced assignment problems, in practice sequence dropout can cause them to be unbalanced. The unbalanced case
|
||||
*can* be reduced to the balanced case, but doing so involves doubling the graph size. Since the current implementation uses only
|
||||
the Hungarian algorithm, graph doubling--which could be challenging with the computational resources available to the
|
||||
author--has not yet been necessary.
|
||||
|
||||
There have been some studies which show that [auction algorithms](https://en.wikipedia.org/wiki/Auction_algorithm) for the assignment problem can have superior performance in
|
||||
real-world implementations, due to their simplicity, than more complex algorithms with better theoretical asymptotic
|
||||
performance. The author has implemented a basic forward auction algorithm, which produces optimal assignment for unbalanced bipartite graphs with
|
||||
integer weights. To allow for unbalanced assignment, this algorithm eschews epsilon-scaling,
|
||||
and as a result is prone to "bidding-wars" which increase run time, making it less efficient than the implementation of
|
||||
the Fredman-Tarjan algorithm in JGraphT. A forward/reverse auction algorithm as developed by Bertsekas and Castañon
|
||||
should be able to handle unbalanced (or, as they call it, asymmetric) assignment much more efficiently, but has yet to be
|
||||
implemented.
|
||||
|
||||
The relative time/space efficiencies of BiGpairSEQ when backed by different MWM algorithms remains an open problem.
|
||||
|
||||
## THE BiGpairSEQ ALGORITHM
|
||||
|
||||
1. Sequence a sample plate of T cells as in pairSEQ.
|
||||
2. Pre-filter the sequence data to reduce error and minimize the size of the necessary graph.
|
||||
1. *Saturating sequence filter*: remove any sequences present in all wells on the sample plate, as there is no signal in the occupancy data of saturating sequences (and each saturating sequence will have an edge to every vertex on the opposite side of the graph, vastly increasing the total graph size).
|
||||
2. *Non-existent sequence filter*: sequencing misreads can pollute the data from the sample plate with non-existent sequences. These can be identified by the discrepancy between their occupancy and their total read count. Assuming sequences are read correctly at least half the time, then a sequence's total read count (R) should be at least half the well occupancy of that sequence (O) times the read depth of the sequencing run (D). Remove any sequences for which R < (O * D) / 2.
|
||||
3. *Misidentified sequence filter*: sequencing misreads can cause one real sequence to be misidentified as a different real sequence. This should be fairly infrequent, but is a problem if it skews a sequence's overall occupancy pattern by causing the sequence to seem to be in a well where it's not. This can be detected by looking for discrepancies in a sequence's per-well read count. On average, the read count for a sequence in an individual well (r) should be equal to its total read count (R) divided by its total well occupancy (O). Remove from the list of wells occupied by a sequence any wells for which r < R / (2 * O).
|
||||
3. Encode the occupancy data from the sample plate as a weighted bipartite graph, where one set of vertices represent the distinct TCRAs and the other set represents distinct TCRBs. Between any TCRA and TCRB that share a well, draw an edge. Assign that edge a weight equal to the total number of wells shared by both sequences.
|
||||
4. Find a maximum weight matching of the bipartite graph, using any [MWM algorithm](https://en.wikipedia.org/wiki/Assignment_problem#Algorithms) that produces a provably optimal result.
|
||||
* If desired, restrict the matching to a subset of the graph. (Example: restricting matching attempts to cases where the occupancy overlap is 4 or more wells--that is, edges with weight >= 4.0.) See below for discussion of why this might be desirable.
|
||||
5. The resultant matching represents the likeliest TCRA/TCRB sequence pairs based on the occupancy pattern of the sample plate.
|
||||
|
||||
It is important to note that a maximum weight matching is not necessarily unique. If two different sets of vertex-disjoint edges
|
||||
sum to the same maximal weight, then a MWM algorithms might find either one of them.
|
||||
|
||||
For example, consider a well that contains four rare sequences found only in that well, two TCRAs and two TCRBs.
|
||||
In the graph, both of those TCRAs would have edges to both TCRBs (and to others of course, but since those edges will have a weight of 1.0,
|
||||
they are unlikely be paired in a MWM to sequences with total occupancy of more than one well). If these four sequences
|
||||
represent two unique T cells, then only one of the two possible pairings between these sequences is correct. But both
|
||||
the correct and incorrect pairing will add 2.0 to the total graph weight, so either one could be part of a maximum weight matching.
|
||||
|
||||
It is to minimize the number of possible equivalent-weight matchings that one might restrict the algorithm to examining
|
||||
only a subset of the graph, as described in step 4 above.
|
||||
|
||||
## USAGE
|
||||
|
||||
@@ -43,13 +123,126 @@ Run with the command:
|
||||
`java -jar BiGpairSEQ_Sim.jar`
|
||||
|
||||
Processing sample plates with tens of thousands of sequences may require large amounts
|
||||
of RAM. It is often desirable to increase the JVM maximum heap allocation with the -Xmx flag.
|
||||
of RAM. It is often desirable to increase the JVM maximum heap allocation with the `-Xmx` flag.
|
||||
For example, to run the program with 32 gigabytes of memory, use the command:
|
||||
|
||||
`java -Xmx32G -jar BiGpairSEQ_Sim.jar`
|
||||
|
||||
Once running, BiGpairSEQ_Sim has an interactive, menu-driven CLI for generating files and simulating TCR pairing. The
|
||||
main menu looks like this:
|
||||
### COMMAND LINE OPTIONS
|
||||
|
||||
There are a number of command line options, to allow the program to be used in shell scripts. These can be viewed with
|
||||
the `-help` flag:
|
||||
|
||||
`java -jar BiGpairSEQ_Sim.jar -help`
|
||||
|
||||
```
|
||||
usage: BiGpairSEQ_Sim.jar
|
||||
-cells,--make-cells Makes a cell sample file of distinct T cells
|
||||
-graph,--make-graph Makes a graph/data file. Requires a cell sample
|
||||
file and a sample plate file
|
||||
-help Displays this help menu
|
||||
-match,--match-cdr3 Matches CDR3s. Requires a graph/data file.
|
||||
-plate,--make-plate Makes a sample plate file. Requires a cell sample
|
||||
file.
|
||||
-version Prints the program version number to stdout
|
||||
|
||||
usage: BiGpairSEQ_Sim.jar -cells
|
||||
-d,--diversity-factor <factor> The factor by which unique CDR3s
|
||||
outnumber unique CDR1s
|
||||
-n,--num-cells <number> The number of distinct cells to generate
|
||||
-o,--output-file <filename> Name of output file
|
||||
|
||||
usage: BiGpairSEQ_Sim.jar -plate
|
||||
-c,--cell-file <filename> The cell sample file to use
|
||||
-d,--dropout-rate <rate> The sequence dropout rate due to
|
||||
amplification error. (0.0 - 1.0)
|
||||
-exp <value> If using -zipf flag, exponent value for
|
||||
distribution
|
||||
-exponential Use an exponential distribution for cell
|
||||
sample
|
||||
-gaussian Use a Gaussian distribution for cell sample
|
||||
-lambda <value> If using -exponential flag, lambda value
|
||||
for distribution
|
||||
-o,--output-file <filename> Name of output file
|
||||
-poisson Use a Poisson distribution for cell sample
|
||||
-pop <number [number]...> The well populations for each section of
|
||||
the sample plate. There will be as many
|
||||
sections as there are populations given.
|
||||
-random <min> <max> Randomize well populations on sample plate.
|
||||
Takes two arguments: the minimum possible
|
||||
population and the maximum possible
|
||||
population.
|
||||
-stddev <value> If using -gaussian flag, standard deviation
|
||||
for distrbution
|
||||
-w,--wells <number> The number of wells on the sample plate
|
||||
-zipf Use a Zipf distribution for cell sample
|
||||
|
||||
usage: BiGpairSEQ_Sim.jar -graph
|
||||
-c,--cell-file <filename> Cell sample file to use for
|
||||
checking pairing accuracy
|
||||
-err,--read-error-prob <prob> (Optional) The probability that
|
||||
a sequence will be misread. (0.0
|
||||
- 1.0)
|
||||
-errcoll,--error-collision-prob <prob> (Optional) The probability that
|
||||
two misreads will produce the
|
||||
same spurious sequence. (0.0 -
|
||||
1.0)
|
||||
-graphml (Optional) Output GraphML file
|
||||
-nb,--no-binary (Optional) Don't output
|
||||
serialized binary file
|
||||
-o,--output-file <filename> Name of output file
|
||||
-p,--plate-filename <filename> Sample plate file from which to
|
||||
construct graph
|
||||
-rd,--read-depth <depth> (Optional) The number of times
|
||||
to read each sequence.
|
||||
-realcoll,--real-collision-prob <prob> (Optional) The probability that
|
||||
a sequence will be misread as
|
||||
another real sequence. (Only
|
||||
applies to unique misreads;
|
||||
after this has happened once,
|
||||
future error collisions could
|
||||
produce the real sequence again)
|
||||
(0.0 - 1.0)
|
||||
|
||||
usage: BiGpairSEQ_Sim.jar -match
|
||||
-g,--graph-file <filename> The graph/data file to use
|
||||
-max <number> The maximum number of shared wells to
|
||||
attempt to match a sequence pair
|
||||
-maxdiff <number> (Optional) The maximum difference in total
|
||||
occupancy between two sequences to attempt
|
||||
matching.
|
||||
-min <number> The minimum number of shared wells to
|
||||
attempt to match a sequence pair
|
||||
-minpct <percent> (Optional) The minimum percentage of a
|
||||
sequence's total occupancy shared by
|
||||
another sequence to attempt matching. (0 -
|
||||
100)
|
||||
-o,--output-file <filename> (Optional) Name of output the output file.
|
||||
If not present, no file will be written.
|
||||
--print-alphas (Optional) Print the number of distinct
|
||||
alpha sequences to stdout.
|
||||
--print-attempt (Optional) Print the pairing attempt rate
|
||||
to stdout
|
||||
--print-betas (Optional) Print the number of distinct
|
||||
beta sequences to stdout.
|
||||
--print-correct (Optional) Print the number of correct
|
||||
pairs to stdout
|
||||
--print-error (Optional) Print the pairing error rate to
|
||||
stdout
|
||||
--print-incorrect (Optional) Print the number of incorrect
|
||||
pairs to stdout
|
||||
--print-metadata (Optional) Print a full summary of the
|
||||
matching results to stdout.
|
||||
--print-time (Optional) Print the total simulation time
|
||||
to stdout.
|
||||
-pv,--p-value (Optional) Calculate p-values for sequence
|
||||
pairs.
|
||||
```
|
||||
|
||||
### INTERACTIVE INTERFACE
|
||||
|
||||
If no command line arguments are given, BiGpairSEQ_Sim will launch with an interactive, menu-driven CLI for
|
||||
generating files and simulating TCR pairing. The main menu looks like this:
|
||||
|
||||
```
|
||||
--------BiGPairSEQ SIMULATOR--------
|
||||
@@ -74,10 +267,12 @@ By default, the Options menu looks like this:
|
||||
3) Turn on graph/data file caching
|
||||
4) Turn off serialized binary graph output
|
||||
5) Turn on GraphML graph output
|
||||
6) Maximum weight matching algorithm options
|
||||
6) Turn on calculation of p-values
|
||||
7) Maximum weight matching algorithm options
|
||||
0) Return to main menu
|
||||
```
|
||||
|
||||
|
||||
### INPUT/OUTPUT
|
||||
|
||||
To run the simulation, the program reads and writes 4 kinds of files:
|
||||
@@ -90,7 +285,7 @@ These files are often generated in sequence. When entering filenames, it is not
|
||||
(.csv or .ser). When reading or writing files, the program will automatically add the correct extension to any filename
|
||||
without one.
|
||||
|
||||
To save file I/O time, the most recent instance of each of these four
|
||||
To save file I/O time when using the interactive interface, the most recent instance of each of these four
|
||||
files either generated or read from disk can be cached in program memory. When caching is active, subsequent uses of the
|
||||
same data file won't need to be read in again until another file of that type is used or generated,
|
||||
or caching is turned off for that file type. The program checks whether it needs to update its cached data by comparing
|
||||
@@ -102,7 +297,7 @@ device-specific.)
|
||||
|
||||
The program's caching behavior can be controlled in the Options menu. By default, all caching is OFF.
|
||||
|
||||
The program can optionally output Graph/Data files in .GraphML format (.graphml) for data portability. This can be
|
||||
The program can optionally output Graph/Data files in GraphML format (.graphml) for data portability. This can be
|
||||
turned on in the Options menu. By default, GraphML output is OFF.
|
||||
|
||||
---
|
||||
@@ -110,7 +305,7 @@ turned on in the Options menu. By default, GraphML output is OFF.
|
||||
Cell Sample files consist of any number of distinct "T cells." Every cell contains
|
||||
four sequences: Alpha CDR3, Beta CDR3, Alpha CDR1, Beta CDR1. The sequences are represented by
|
||||
random integers. CDR3 Alpha and Beta sequences are all unique within a given Cell Sample file. CDR1 Alpha and Beta sequences
|
||||
are not necessarily unique; the relative diversity can be set when making the file.
|
||||
are not necessarily unique; the relative diversity of CRD1s with respect to CDR3s can be set when making the file.
|
||||
|
||||
(Note: though cells still have CDR1 sequences, matching of CDR1s is currently awaiting re-implementation.)
|
||||
|
||||
@@ -127,7 +322,7 @@ Structure:
|
||||
| Alpha CDR3 | Beta CDR3 | Alpha CDR1 | Beta CDR1 |
|
||||
|---|---|---|---|
|
||||
|unique number|unique number|number|number|
|
||||
|
||||
| ... | ... |... | ... |
|
||||
---
|
||||
|
||||
#### Sample Plate Files
|
||||
@@ -136,7 +331,8 @@ described above). The wells are filled randomly from a Cell Sample file, accordi
|
||||
frequency distribution. Additionally, every individual sequence within each cell may, with some
|
||||
given dropout probability, be omitted from the file; this simulates the effect of amplification errors
|
||||
prior to sequencing. Plates can also be partitioned into any number of sections, each of which can have a
|
||||
different concentration of T cells per well.
|
||||
different concentration of T cells per well. Alternatively, the number of T cells in each well can be randomized between
|
||||
given minimum and maximum population values.
|
||||
|
||||
Options when making a Sample Plate file:
|
||||
* Cell Sample file to use
|
||||
@@ -146,7 +342,8 @@ Options when making a Sample Plate file:
|
||||
* Standard deviation size
|
||||
* Exponential
|
||||
* Lambda value
|
||||
* *(Based on the slope of the graph in Figure 4C of the pairSEQ paper, the distribution of the original experiment was approximately exponential with a lambda ~0.6. (Howie, et al. 2015))*
|
||||
* Zipf
|
||||
* Exponent value
|
||||
* Total number of wells on the plate
|
||||
* Well populations random or fixed
|
||||
* If random, minimum and maximum population sizes
|
||||
@@ -154,7 +351,7 @@ Options when making a Sample Plate file:
|
||||
* Number of sections on plate
|
||||
* Number of T cells per well
|
||||
* per section, if more than one section
|
||||
* Dropout rate
|
||||
* Sequence dropout rate
|
||||
|
||||
Files are in CSV format. There are no header labels. Every row represents a well.
|
||||
Every value represents an individual cell, containing four sequences, depicted as an array string:
|
||||
@@ -193,19 +390,29 @@ then use it for multiple different BiGpairSEQ simulations.
|
||||
|
||||
Options for creating a Graph/Data file:
|
||||
* The Cell Sample file to use
|
||||
* The Sample Plate file to use. (This must have been generated from the selected Cell Sample file.)
|
||||
* The Sample Plate file to use (This must have been generated from the selected Cell Sample file.)
|
||||
* Whether to simulate sequencing read depth. If simulated:
|
||||
* The read depth (The number of times each sequence is read)
|
||||
* The read error rate (The probability a sequence is misread)
|
||||
* The error collision rate (The probability two misreads produce the same spurious sequence)
|
||||
* The real sequence collision rate (The probability that a misread will produce a different, real sequence from the sample plate. Only applies to new misreads; once an error of this type has occurred, it's likelihood of occurring again is dominated by the error collision probability.)
|
||||
|
||||
These files do not have a human-readable structure, and are not portable to other programs.
|
||||
|
||||
(For portability to other software, turn on GraphML output in the Options menu. This will produce a .graphml file
|
||||
for the weighted graph, with vertex attributes sequence, type, and occupancy data.)
|
||||
*Optional GraphML output*
|
||||
|
||||
For portability of graph data to other software, turn on [GraphML](http://graphml.graphdrawing.org/index.html) output
|
||||
in the Options menu in interactive mode, or use the `-graphml`command line argument. This will produce a .graphml file
|
||||
for the weighted graph, with vertex attributes for sequence, type, total occupancy, total read count, and the read count for every individual occupied well.
|
||||
This graph contains all the data necessary for the BiGpairSEQ matching algorithm. It does not include the data to measure pairing accuracy; for that,
|
||||
compare the matching results to the original Cell Sample .csv file.
|
||||
|
||||
---
|
||||
|
||||
#### Matching Results Files
|
||||
Matching results files consist of the results of a BiGpairSEQ matching simulation. Making them requires a serialized
|
||||
binary Graph/Data file (.ser). (Because .graphML files are larger than .ser files, BiGpairSEQ_Sim supports .graphML
|
||||
output only. Graph/data input must use a serialized binary.)
|
||||
output only. Graph input must use a serialized binary.)
|
||||
|
||||
Matching results files are in CSV format. Rows are sequence pairings with extra relevant data. Columns are pairing-specific details.
|
||||
Metadata about the matching simulation is included as comments. Comments are preceded by `#`.
|
||||
@@ -223,95 +430,261 @@ Options when running a BiGpairSEQ simulation of CDR3 alpha/beta matching:
|
||||
Example output:
|
||||
|
||||
```
|
||||
# Source Sample Plate file: 4MilCellsPlate.csv
|
||||
# Source Graph and Data file: 4MilCellsPlateGraph.ser
|
||||
# T cell counts in sample plate wells: 30000
|
||||
# Total alphas found: 11813
|
||||
# Total betas found: 11808
|
||||
# High overlap threshold: 94
|
||||
# Low overlap threshold: 3
|
||||
# Minimum overlap percent: 0
|
||||
# Maximum occupancy difference: 96
|
||||
# Pairing attempt rate: 0.438
|
||||
# Correct pairings: 5151
|
||||
# Incorrect pairings: 18
|
||||
# Pairing error rate: 0.00348
|
||||
# Simulation time: 862 seconds
|
||||
# cell sample filename: 8MilCells.csv
|
||||
# cell sample size: 8000000
|
||||
# sample plate filename: 8MilCells_Plate.csv
|
||||
# sample plate well count: 96
|
||||
# sequence dropout rate: 0.1
|
||||
# graph filename: 8MilGraph_rd2
|
||||
# MWM algorithm type: LEDA book with heap: FIBONACCI
|
||||
# matching weight: 218017.0
|
||||
# well populations: 4000
|
||||
# sequence read depth: 100
|
||||
# sequence read error rate: 0.01
|
||||
# read error collision rate: 0.1
|
||||
# real sequence collision rate: 0.05
|
||||
# total alphas read from plate: 323711
|
||||
# total betas read from plate: 323981
|
||||
# alphas in graph (after pre-filtering): 11707
|
||||
# betas in graph (after pre-filtering): 11705
|
||||
# high overlap threshold for pairing: 95
|
||||
# low overlap threshold for pairing: 3
|
||||
# minimum overlap percent for pairing: 0
|
||||
# maximum occupancy difference for pairing: 2147483647
|
||||
# pairing attempt rate: 0.716
|
||||
# correct pairing count: 8373
|
||||
# incorrect pairing count: 7
|
||||
# pairing error rate: 0.000835
|
||||
# time to generate graph (seconds): 293
|
||||
# time to pair sequences (seconds): 1,416
|
||||
# total simulation time (seconds): 1,709
|
||||
```
|
||||
|
||||
| Alpha | Alpha well count | Beta | Beta well count | Overlap count | Matched Correctly? | P-value |
|
||||
|---|---|---|---|---|---|---|
|
||||
|5242972|17|1571520|18|17|true|1.41E-18|
|
||||
|5161027|18|2072219|18|18|true|7.31E-20|
|
||||
|4145198|33|1064455|30|29|true|2.65E-21|
|
||||
|7700582|18|112748|18|18|true|7.31E-20|
|
||||
|10258642|73|1172093|72|70.0|true|4.19E-21|
|
||||
|6186865|34|4290363|37|34.0|true|4.56E-26|
|
||||
|10222686|70|11044018|72|68.0|true|9.55E-25|
|
||||
|5338100|75|2422988|76|74.0|true|4.57E-22|
|
||||
|12363907|33|6569852|35|33.0|true|5.70E-26|
|
||||
|...|...|...|...|...|...|...|
|
||||
|
||||
---
|
||||
|
||||
**NOTE: The p-values in the output are not used for matching**—they aren't part of the BiGpairSEQ algorithm at all.
|
||||
P-values are calculated *after* BiGpairSEQ matching is completed, for purposes of comparison only,
|
||||
using the (2021 corrected) formula from the original pairSEQ paper. (Howie, et al. 2015)
|
||||
**NOTE: The p-values in the sample output above are not used for matching**—they aren't part of the BiGpairSEQ algorithm at all.
|
||||
P-values (if enabled in the interactive menu options or by using the -pv flag on the command line) are calculated *after*
|
||||
BiGpairSEQ matching is completed, for purposes of comparison with pairSEQ only, using the (corrected) formula from the
|
||||
original pairSEQ paper. (Howie, et al. 2015) Calculation of p-values is off by default to reduce processing time.
|
||||
|
||||
### PERFORMANCE
|
||||
Performance details of the example excerpted above:
|
||||
|
||||
On a home computer with a Ryzen 5600X CPU, 64GB of 3200MHz DDR4 RAM (half of which was allocated to the Java Virtual Machine), and a PCIe 3.0 SSD, running Linux Mint 20.3 Edge (5.13 kernel),
|
||||
the author ran a BiGpairSEQ simulation of a 96-well sample plate with 30,000 T cells/well comprising ~11,800 alphas and betas,
|
||||
taken from a sample of 4,000,000 distinct cells with an exponential frequency distribution.
|
||||
## RESULTS
|
||||
|
||||
With min/max occupancy threshold of 3 and 94 wells for matching, and no other pre-filtering, BiGpairSEQ identified 5,151
|
||||
correct pairings and 18 incorrect pairings, for an accuracy of 99.652%.
|
||||
Several BiGpairSEQ simulations were performed on a home computer with the following specs:
|
||||
|
||||
The simulation time was 14'22". If intermediate results were held in memory, this would be equivalent to the total elapsed time.
|
||||
* Ryzen 5600X CPU
|
||||
* 128GB of 3200MHz DDR4 RAM
|
||||
* 2TB PCIe 3.0 SSD
|
||||
* Linux Mint 21 (5.15 kernel)
|
||||
|
||||
Since this implementation of BiGpairSEQ writes intermediate results to disk (to improve the efficiency of *repeated* simulations
|
||||
with different filtering options), the actual elapsed time was greater. File I/O time was not measured, but took
|
||||
slightly less time than the simulation itself. Real elapsed time from start to finish was under 30 minutes.
|
||||
### SAMPLE PLATES WITH VARYING NUMBERS OF CELLS PER WELL
|
||||
|
||||
## TODO
|
||||
The probability calculations used by pairSEQ require that every well on the sample plate contain the same number of T cells.
|
||||
BiGpairSEQ does not share this limitation; it is robust to variations in the number of cells per well.
|
||||
|
||||
* ~~Try invoking GC at end of workloads to reduce paging to disk~~ DONE
|
||||
* ~~Hold graph data in memory until another graph is read-in? ABANDONED UNABANDONED~~ DONE
|
||||
* ~~*No, this won't work, because BiGpairSEQ simulations alter the underlying graph based on filtering constraints. Changes would cascade with multiple experiments.*~~
|
||||
* Might have figured out a way to do it, by taking edges out and then putting them back into the graph. This may actually be possible.
|
||||
* It is possible, though the modifications to the graph incur their own performance penalties. Need testing to see which option is best.
|
||||
* ~~Test whether pairing heap (currently used) or Fibonacci heap is more efficient for priority queue in current matching algorithm~~ DONE
|
||||
* ~~in theory Fibonacci heap should be more efficient, but complexity overhead may eliminate theoretical advantage~~
|
||||
* ~~Add controllable heap-type parameter?~~
|
||||
* Parameter implemented. Fibonacci heap the current default.
|
||||
* ~~Implement sample plates with random numbers of T cells per well.~~ DONE
|
||||
* Possible BiGpairSEQ advantage over pairSEQ: BiGpairSEQ is resilient to variations in well population sizes on a sample plate; pairSEQ is not.
|
||||
* preliminary data suggests that BiGpairSEQ behaves roughly as though the whole plate had whatever the *average* well concentration is, but that's still speculative.
|
||||
* See if there's a reasonable way to reformat Sample Plate files so that wells are columns instead of rows.
|
||||
* ~~Problem is variable number of cells in a well~~
|
||||
* ~~Apache Commons CSV library writes entries a row at a time~~
|
||||
* _Got this working, but at the cost of a profoundly strange bug in graph occupancy filtering. Have reverted the repo until I can figure out what caused that. Given how easily Thingiverse transposes CSV matrices in R, might not even be worth fixing.
|
||||
* ~~Enable GraphML output in addition to serialized object binaries, for data portability~~ DONE
|
||||
* ~~Custom vertex type with attribute for sequence occupancy?~~ ABANDONED
|
||||
* Have a branch where this is implemented, but there's a bug that broke matching. Don't currently have time to fix.
|
||||
* Re-implement command line arguments, to enable scripting and statistical simulation studies
|
||||
* Re-implement CDR1 matching method
|
||||
* Implement Duan and Su's maximum weight matching algorithm
|
||||
* Add controllable algorithm-type parameter?
|
||||
* This would be fun and valuable, but probably take more time than I have for a hobby project.
|
||||
A series of BiGpairSEQ simulations were conducted using a cell sample file of 3.5 million unique T cells. From these cells,
|
||||
10 sample plate files were created. All of these sample plates had 96 wells, used an exponential distribution with a lambda of 0.6, and
|
||||
had a sequence dropout rate of 10%.
|
||||
|
||||
The well populations of the plates were:
|
||||
* One sample plate with 1000 T cells/well
|
||||
* One sample plate with 2000 T cells/well
|
||||
* One sample plate with 3000 T cells/well
|
||||
* One sample plate with 4000 T cells/well
|
||||
* One sample plate with 5000 T cells/well
|
||||
* Five sample plates with each individual well's population randomized, from 1000 to 5000 T cells. (Average population ~3000 T cells/well.)
|
||||
|
||||
All BiGpairSEQ simulations were run with a low overlap threshold of 3 and a high overlap threshold of 94.
|
||||
No optional filters were used, so pairing was attempted for all sequences with overlaps within the threshold values.
|
||||
|
||||
NOTE: these results were obtained with an earlier version of BiGpairSEQ_Sim, and should be re-run with the current version.
|
||||
The observed behavior is not believed to be likely to change, however.
|
||||
|
||||
Constant well population plate results:
|
||||
|
||||
| |1000 Cell/Well Plate|2000 Cell/Well Plate|3000 Cell/Well Plate|4000 Cell/Well Plate|5000 Cell/Well Plate
|
||||
|---|---|---|---|---|---|
|
||||
|Total Alphas Found|6407|7330|7936|8278|8553|
|
||||
|Total Betas Found|6405|7333|7968|8269|8582|
|
||||
|Pairing Attempt Rate|0.661|0.653|0.600|0.579|0.559|
|
||||
|Correct Pairing Count|4231|4749|4723|4761|4750|
|
||||
|Incorrect Pairing Count|3|34|40|26|29|
|
||||
|Pairing Error Rate|0.000709|0.00711|0.00840|0.00543|0.00607|
|
||||
|Simulation Time (Seconds)|500|643|700|589|598|
|
||||
|
||||
Randomized well population plate results:
|
||||
|
||||
| |Random Plate 1 | Random Plate 2|Random Plate 3|Random Plate 4|Random Plate 5|Average|
|
||||
|---|---|---|---|---|---|---|
|
||||
Total Alphas Found|7853|7904|7964|7898|7917|7907|
|
||||
Total Betas Found|7851|7891|7920|7910|7894|7893|
|
||||
Pairing Attempt Rate|0.607|0.610|0.601|0.605|0.603|0.605|
|
||||
Correct Pairing Count|4718|4782|4721|4755|4731|4741|
|
||||
Incorrect Pairing Count|51|35|42|27|29|37|
|
||||
Pairing Error Rate|0.0107|0.00727|0.00882|0.00565|0.00609|0.00771|
|
||||
Simulation Time (Seconds)|590|677|730|618|615|646|
|
||||
|
||||
The average results for the randomized plates are closest to the constant plate with 3000 T cells/well.
|
||||
This and several other tests indicate that BiGpairSEQ treats a sample plate with a highly variable number of T cells/well
|
||||
roughly as though it had a constant well population equal to the plate's average well population.
|
||||
|
||||
### SIMULATING EXPERIMENTS FROM THE 2015 pairSEQ PAPER
|
||||
#### Experiment 1
|
||||
This simulation was an attempt to replicate the conditions of experiment 1 from the 2015 pairSEQ paper: a matching was found for a
|
||||
96-well sample plate with 4,000 T cells/well, taken from a sample of 8,400,000
|
||||
distinct cells sampled with an exponential frequency distribution. Examination of Figure 4C from the paper seems to show the points
|
||||
(-5, 4) and (-4.5, 3.3) on the line at the boundary of the shaded region, so a lambda value of 1.4 was used for the
|
||||
exponential distribution.
|
||||
|
||||
The sequence dropout rate was 10%, as the analysis in the paper concluded that most TCR
|
||||
sequences "have less than a 10% chance of going unobserved." (Howie, et al. 2015) Given this choice of 10%, the simulated
|
||||
sample plate is likely to have more sequence dropout, and thus greater error, than the real experiment.
|
||||
|
||||
The original paper does not contain (or the author of this document failed to identify) information on sequencing depth,
|
||||
read error probability, or the probabilities of different kinds of read error collisions. As the pre-filtering of BiGpairSEQ
|
||||
has successfully filtered out all such errors for any reasonable error rates the author has yet tested, this simulation was
|
||||
done without simulating any sequencing errors, to reduce the processing time.
|
||||
|
||||
This simulation was performed 5 times with min/max occupancy thresholds of 3 and 95 wells respectively for matching.
|
||||
|
||||
| |Run 1|Run 2|Run 3|Run 4|Run 5| Average|
|
||||
|---|---|---|---|---|---|---|
|
||||
|Total pairs|4398|4420|4404|4409|4414|4409|
|
||||
|Correct pairs|4322|4313|4337|4336|4339|4329.4|
|
||||
|Incorrect pairs|76|107|67|73|75|79.6|
|
||||
|Error rate|0.0173|0.0242|0.0152|0.0166|0.0170|0.018|
|
||||
|Simulation time (seconds)|697|484|466|473|463|516.6|
|
||||
|
||||
The experiment in the original paper called 4143 pairs with a false discovery rate of 0.01.
|
||||
|
||||
Given the roughness of the estimation for the cell frequency distribution of the original experiment and the likely
|
||||
higher rate of sequence dropout in the simulation, these simulated results match the real experiment fairly well.
|
||||
|
||||
#### Experiment 3
|
||||
To simulate experiment 3 from the original paper, a matching was made for a 96-well sample plate with 160,000 T cells/well,
|
||||
taken from a sample of 4.5 million distinct T cells sampled with an exponential frequency distribution (lambda 1.4). The
|
||||
sequence dropout rate was again 10%, and no sequencing errors were simulated. Once again, deviation from the original
|
||||
experiment is expected due to the roughness of the estimated frequency distribution, and due to the high sequence dropout
|
||||
rate.
|
||||
|
||||
Results metadata:
|
||||
```
|
||||
# total alphas read from plate: 6929
|
||||
# total betas read from plate: 6939
|
||||
# alphas in graph (after pre-filtering): 4452
|
||||
# betas in graph (after pre-filtering): 4461
|
||||
# high overlap threshold for pairing: 95
|
||||
# low overlap threshold for pairing: 3
|
||||
# minimum overlap percent for pairing: 0
|
||||
# maximum occupancy difference for pairing: 100
|
||||
# pairing attempt rate: 0.767
|
||||
# correct pairing count: 3233
|
||||
# incorrect pairing count: 182
|
||||
# pairing error rate: 0.0533
|
||||
# time to generate graph (seconds): 40
|
||||
# time to pair sequences (seconds): 230
|
||||
# total simulation time (seconds): 270
|
||||
```
|
||||
|
||||
The simulation ony found 6929 distinct TCRAs and 6939 TCRBs on the sample plate, orders of magnitude fewer than the number of
|
||||
pairs called in the pairSEQ experiment. These results show that at very high sampling depths, the differences in the
|
||||
underlying frequency distribution drastically affect the results. The real distribution clearly has a much longer "tail"
|
||||
than the simulated exponential distribution. Implementing a way to exert finer control over the sampling distribution from
|
||||
the file of distinct cells may enable better simulated replication of this experiment.
|
||||
|
||||
## CITATIONS
|
||||
* Howie, B., Sherwood, A. M., et al. ["High-throughput pairing of T cell receptor alpha and beta sequences."](https://pubmed.ncbi.nlm.nih.gov/26290413/) Sci. Transl. Med. 7, 301ra131 (2015)
|
||||
* Duan, R., Su H. ["A Scaling Algorithm for Maximum Weight Matching in Bipartite Graphs."](https://web.eecs.umich.edu/~pettie/matching/Duan-Su-scaling-bipartite-matching.pdf) Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, p. 1413-1424. (2012)
|
||||
* Melhorn, K., Näher, St. [The LEDA Platform of Combinatorial and Geometric Computing.](https://people.mpi-inf.mpg.de/~mehlhorn/LEDAbook.html) Cambridge University Press. Chapter 7, Graph Algorithms; p. 132-162 (1999)
|
||||
* Fredman, M., Tarjan, R. ["Fibonacci heaps and their uses in improved network optimization algorithms."](https://www.cl.cam.ac.uk/teaching/1011/AlgorithII/1987-FredmanTar-fibonacci.pdf) J. ACM, 34(3):596–615 (1987))
|
||||
* Bertsekas, D., Castañon, D. ["A forward/reverse auction algorithm for asymmetric assignment problems."](https://www.mit.edu/~dimitrib/For_Rev_Asym_Auction.pdf) Computational Optimization and Applications 1, 277-297 (1992)
|
||||
* Dimitrios Michail, Joris Kinable, Barak Naveh, and John V. Sichi. ["JGraphT—A Java Library for Graph Data Structures and Algorithms."](https://dl.acm.org/doi/10.1145/3381449) ACM Trans. Math. Softw. 46, 2, Article 16 (2020)
|
||||
|
||||
## EXTERNAL LIBRARIES USED
|
||||
* [JGraphT](https://jgrapht.org) -- Graph theory data structures and algorithms
|
||||
* [JHeaps](https://www.jheaps.org) -- For pairing heap priority queue used in maximum weight matching algorithm
|
||||
* [Apache Commons CSV](https://commons.apache.org/proper/commons-csv/) -- For CSV file output
|
||||
* [Apache Commons CLI](https://commons.apache.org/proper/commons-cli/) -- To enable command line arguments for scripting. (**Awaiting re-implementation**.)
|
||||
* [Apache Commons CLI](https://commons.apache.org/proper/commons-cli/) -- To enable command line arguments for scripting.
|
||||
|
||||
## ACKNOWLEDGEMENTS
|
||||
BiGpairSEQ was conceived in collaboration with Dr. Alice MacQueen, who brought the original
|
||||
BiGpairSEQ was conceived in collaboration with the author's spouse, Dr. Alice MacQueen, who brought the original
|
||||
pairSEQ paper to the author's attention and explained all the biology terms he didn't know.
|
||||
|
||||
## AUTHOR
|
||||
BiGpairSEQ algorithm and simulation by Eugene Fischer, 2021. UI improvements and documentation, 2022.
|
||||
BiGpairSEQ algorithm and simulation by Eugene Fischer, 2021. Improvements and documentation, 2022–2025.
|
||||
|
||||
## DISCLOSURE
|
||||
The earliest versions of the BiGpairSEQ simulator were written in 2021 to let Dr. MacQueen test hypothetical extensions
|
||||
of the published pairSEQ protocol while she was interviewing for a position at Adaptive Biotechnologies. She was
|
||||
employed at Adaptive Biotechnologies starting in 2022.
|
||||
|
||||
The author has worked on this BiGpairSEQ simulator since 2021 without Dr. MacQueen's involvement, since she has had
|
||||
access to related, proprietary technologies. The author has had no such access, relying exclusively on the 2015 pairSEQ
|
||||
paper and other academic publications. He continues to work on the BiGpairSEQ simulator recreationally, as it has been
|
||||
a means of exploring some very beautiful math.
|
||||
|
||||
## TODO
|
||||
|
||||
* Consider whether a graph database might be a better option than keeping things in memory.
|
||||
* Look at fastUtil for more performant maps and arrays. Note that there is an optional jGraphT library to work with fastUtil (see FastutilMapIntVertexGraph, for example).
|
||||
* Consider implementing an option to use the jGrapht sparse graph representation for a lower memory cost with very large graphs (tens or hundreds of thousands of distinct sequences).
|
||||
* ~~Update CLI option text in this readme to include Zipf distribution options~~
|
||||
* ~~Try invoking GC at end of workloads to reduce paging to disk~~ DONE
|
||||
* ~~Hold graph data in memory until another graph is read-in? ABANDONED UNABANDONED~~ DONE
|
||||
* ~~*No, this won't work, because BiGpairSEQ simulations alter the underlying graph based on filtering constraints. Changes would cascade with multiple experiments.*~~
|
||||
* Might have figured out a way to do it, by taking edges out and then putting them back into the graph. This may actually be possible.
|
||||
* It is possible, though the modifications to the graph incur their own performance penalties. Need testing to see which option is best. It may be computer-specific.
|
||||
* ~~Test whether pairing heap (currently used) or Fibonacci heap is more efficient for priority queue in current matching algorithm~~ DONE
|
||||
* ~~in theory Fibonacci heap should be more efficient, but complexity overhead may eliminate theoretical advantage~~
|
||||
* ~~Add controllable heap-type parameter?~~
|
||||
* Parameter implemented. Pairing heap the current default.
|
||||
* ~~Implement sample plates with random numbers of T cells per well.~~ DONE
|
||||
* Possible BiGpairSEQ advantage over pairSEQ: BiGpairSEQ is resilient to variations in well population sizes on a sample plate; pairSEQ is not due to nature of probability calculations.
|
||||
* preliminary data suggests that BiGpairSEQ behaves roughly as though the whole plate had whatever the *average* well concentration is, but that's still speculative.
|
||||
* ~~See if there's a reasonable way to reformat Sample Plate files so that wells are columns instead of rows.~~
|
||||
* ~~Problem is variable number of cells in a well~~
|
||||
* ~~Apache Commons CSV library writes entries a row at a time~~
|
||||
* Got this working, but at the cost of a profoundly strange bug in graph occupancy filtering. Have reverted the repo until I can figure out what caused that. Given how easily Thingiverse transposes CSV matrices in R, might not even be worth fixing.
|
||||
* ~~Enable GraphML output in addition to serialized object binaries, for data portability~~ DONE
|
||||
* ~~Have a branch where this is implemented, but there's a bug that broke matching. Don't currently have time to fix.~~
|
||||
* ~~Re-implement command line arguments, to enable scripting and statistical simulation studies~~ DONE
|
||||
* ~~Implement custom Vertex class to simplify code and make it easier to implement different MWM algorithms~~ DONE
|
||||
* Advantage: would eliminate the need to use maps to associate vertices with sequences, which would make the code easier to understand.
|
||||
* This also seems to be faster when using the same algorithm than the version with lots of maps, which is a nice bonus!
|
||||
* ~~Implement simulation of read depth, and of read errors. Pre-filter graph for difference in read count to eliminate spurious sequences.~~ DONE
|
||||
* Pre-filtering based on comparing (read depth) * (occupancy) to (read count) for each sequence works extremely well
|
||||
* ~~Add read depth simulation options to CLI~~ DONE
|
||||
* ~~Update graphml output to reflect current Vertex class attributes~~ DONE
|
||||
* Individual well data from the SequenceRecords could be included, if there's ever a reason for it
|
||||
* ~~Implement simulation of sequences being misread as other real sequence~~ DONE
|
||||
* Implement redistributive heap for LEDA matching algorithm to achieve theoretical worst case of O(n(m + n log C)) where C is highest edge weight.
|
||||
* Update matching metadata output options in CLI
|
||||
* Add frequency distribution details to metadata output
|
||||
* need to make an enum for the different distribution types and refactor the Plate class and user interfaces, also add the necessary fields to GraphWithMapData and then call if from Simulator
|
||||
* Update performance data in this readme
|
||||
* ~~Add section to ReadMe describing data filtering methods.~~ DONE, now part of algorithm description
|
||||
* Re-implement CDR1 matching method
|
||||
* ~~Refactor simulator code to collect all needed data in a single scan of the plate~~ DONE
|
||||
* ~~Currently it scans once for the vertices and then again for the edge weights. This made simulating read depth awkward, and incompatible with caching of plate files.~~
|
||||
* ~~This would be a fairly major rewrite of the simulator code, but could make things faster, and would definitely make them cleaner.~~
|
||||
* Implement Duan and Su's maximum weight matching algorithm
|
||||
* ~~Add controllable algorithm-type parameter?~~ DONE
|
||||
* This would be fun and valuable, but probably take more time than I have for a hobby project.
|
||||
* ~~Implement an auction algorithm for maximum weight matching~~ DONE
|
||||
* Implement a forward/reverse auction algorithm for maximum weight matching
|
||||
* Implement an algorithm for approximating a maximum weight matching
|
||||
* Some of these run in linear or near-linear time
|
||||
* given that the underlying biological samples have many, many sources of error, this would probably be the most useful option in practice. It seems less mathematically elegant, though, and so less fun for me.
|
||||
* Implement Vose's alias method for arbitrary statistical distributions of cells
|
||||
* Should probably refactor to use apache commons rng for this
|
||||
* Use commons JCS for caching
|
||||
* Parameterize pre-filtering options
|
||||
5
src/main/java/AlgorithmType.java
Normal file
5
src/main/java/AlgorithmType.java
Normal file
@@ -0,0 +1,5 @@
|
||||
public enum AlgorithmType {
|
||||
HUNGARIAN, //Hungarian algorithm
|
||||
AUCTION, //Forward auction algorithm
|
||||
INTEGER_WEIGHT_SCALING, //integer weight scaling algorithm of Duan and Su
|
||||
}
|
||||
@@ -13,9 +13,13 @@ public class BiGpairSEQ {
|
||||
private static boolean cacheCells = false;
|
||||
private static boolean cachePlate = false;
|
||||
private static boolean cacheGraph = false;
|
||||
private static String priorityQueueHeapType = "FIBONACCI";
|
||||
private static AlgorithmType matchingAlgorithmType = AlgorithmType.HUNGARIAN;
|
||||
private static HeapType priorityQueueHeapType = HeapType.PAIRING;
|
||||
private static DistributionType distributionType = DistributionType.ZIPF;
|
||||
private static boolean outputBinary = true;
|
||||
private static boolean outputGraphML = false;
|
||||
private static boolean calculatePValue = false;
|
||||
private static final String version = "version 4.2";
|
||||
|
||||
public static void main(String[] args) {
|
||||
if (args.length == 0) {
|
||||
@@ -23,8 +27,8 @@ public class BiGpairSEQ {
|
||||
}
|
||||
else {
|
||||
//This will be uncommented when command line arguments are re-implemented.
|
||||
//CommandLineInterface.startCLI(args);
|
||||
System.out.println("Command line arguments are still being re-implemented.");
|
||||
CommandLineInterface.startCLI(args);
|
||||
//System.out.println("Command line arguments are still being re-implemented.");
|
||||
}
|
||||
}
|
||||
|
||||
@@ -57,6 +61,10 @@ public class BiGpairSEQ {
|
||||
return cellFilename;
|
||||
}
|
||||
|
||||
public static DistributionType getDistributionType() {return distributionType;}
|
||||
|
||||
public static void setDistributionType(DistributionType type) {distributionType = type;}
|
||||
|
||||
public static Plate getPlateInMemory() {
|
||||
return plateInMemory;
|
||||
}
|
||||
@@ -106,7 +114,6 @@ public class BiGpairSEQ {
|
||||
return graphFilename;
|
||||
}
|
||||
|
||||
|
||||
public static boolean cacheCells() {
|
||||
return cacheCells;
|
||||
}
|
||||
@@ -155,16 +162,24 @@ public class BiGpairSEQ {
|
||||
BiGpairSEQ.cacheGraph = cacheGraph;
|
||||
}
|
||||
|
||||
public static String getPriorityQueueHeapType() {
|
||||
public static HeapType getPriorityQueueHeapType() {
|
||||
return priorityQueueHeapType;
|
||||
}
|
||||
|
||||
public static AlgorithmType getMatchingAlgorithmType() { return matchingAlgorithmType; }
|
||||
|
||||
public static void setHungarianAlgorithm() { matchingAlgorithmType = AlgorithmType.HUNGARIAN; }
|
||||
|
||||
public static void setIntegerWeightScalingAlgorithm() { matchingAlgorithmType = AlgorithmType.INTEGER_WEIGHT_SCALING; }
|
||||
|
||||
public static void setAuctionAlgorithm() { matchingAlgorithmType = AlgorithmType.AUCTION; }
|
||||
|
||||
public static void setPairingHeap() {
|
||||
priorityQueueHeapType = "PAIRING";
|
||||
priorityQueueHeapType = HeapType.PAIRING;
|
||||
}
|
||||
|
||||
public static void setFibonacciHeap() {
|
||||
priorityQueueHeapType = "FIBONACCI";
|
||||
priorityQueueHeapType = HeapType.FIBONACCI;
|
||||
}
|
||||
|
||||
public static boolean outputBinary() {return outputBinary;}
|
||||
@@ -173,4 +188,8 @@ public class BiGpairSEQ {
|
||||
public static boolean outputGraphML() {return outputGraphML;}
|
||||
public static void setOutputGraphML(boolean b) {outputGraphML = b;}
|
||||
|
||||
public static boolean calculatePValue() {return calculatePValue; }
|
||||
public static void setCalculatePValue(boolean b) {calculatePValue = b; }
|
||||
|
||||
public static String getVersion() { return version; }
|
||||
}
|
||||
|
||||
@@ -12,7 +12,7 @@ import java.util.List;
|
||||
public class CellFileReader {
|
||||
|
||||
private String filename;
|
||||
private List<Integer[]> distinctCells = new ArrayList<>();
|
||||
private List<String[]> distinctCells = new ArrayList<>();
|
||||
private Integer cdr1Freq;
|
||||
|
||||
public CellFileReader(String filename) {
|
||||
@@ -32,11 +32,11 @@ public class CellFileReader {
|
||||
CSVParser parser = new CSVParser(reader, cellFileFormat);
|
||||
){
|
||||
for(CSVRecord record: parser.getRecords()) {
|
||||
Integer[] cell = new Integer[4];
|
||||
cell[0] = Integer.valueOf(record.get("Alpha CDR3"));
|
||||
cell[1] = Integer.valueOf(record.get("Beta CDR3"));
|
||||
cell[2] = Integer.valueOf(record.get("Alpha CDR1"));
|
||||
cell[3] = Integer.valueOf(record.get("Beta CDR1"));
|
||||
String[] cell = new String[4];
|
||||
cell[0] = record.get("Alpha CDR3");
|
||||
cell[1] = record.get("Beta CDR3");
|
||||
cell[2] = record.get("Alpha CDR1");
|
||||
cell[3] = record.get("Beta CDR1");
|
||||
distinctCells.add(cell);
|
||||
}
|
||||
|
||||
@@ -47,8 +47,8 @@ public class CellFileReader {
|
||||
}
|
||||
|
||||
//get CDR1 frequency
|
||||
ArrayList<Integer> cdr1Alphas = new ArrayList<>();
|
||||
for (Integer[] cell : distinctCells) {
|
||||
ArrayList<String> cdr1Alphas = new ArrayList<>();
|
||||
for (String[] cell : distinctCells) {
|
||||
cdr1Alphas.add(cell[3]);
|
||||
}
|
||||
double count = cdr1Alphas.stream().distinct().count();
|
||||
@@ -58,18 +58,10 @@ public class CellFileReader {
|
||||
}
|
||||
|
||||
public CellSample getCellSample() {
|
||||
return new CellSample(distinctCells, cdr1Freq);
|
||||
CellSample sample = new CellSample(distinctCells, cdr1Freq);
|
||||
sample.setFilename(filename);
|
||||
return sample;
|
||||
}
|
||||
|
||||
public String getFilename() { return filename;}
|
||||
|
||||
//Refactor everything that uses this to have access to a Cell Sample and get the cells there instead.
|
||||
public List<Integer[]> getListOfDistinctCellsDEPRECATED(){
|
||||
return distinctCells;
|
||||
}
|
||||
|
||||
public Integer getCellCountDEPRECATED() {
|
||||
//Refactor everything that uses this to have access to a Cell Sample and get the count there instead.
|
||||
return distinctCells.size();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -11,7 +11,7 @@ import java.util.List;
|
||||
public class CellFileWriter {
|
||||
|
||||
private String[] headers = {"Alpha CDR3", "Beta CDR3", "Alpha CDR1", "Beta CDR1"};
|
||||
List<Integer[]> cells;
|
||||
List<String[]> cells;
|
||||
String filename;
|
||||
Integer cdr1Freq;
|
||||
|
||||
@@ -35,7 +35,7 @@ public class CellFileWriter {
|
||||
printer.printComment("Sample contains 1 unique CDR1 for every " + cdr1Freq + "unique CDR3s.");
|
||||
printer.printRecords(cells);
|
||||
} catch(IOException ex){
|
||||
System.out.println("Could not make new file named "+filename);
|
||||
System.out.println("Could not make new file named " + filename);
|
||||
System.err.println(ex);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -5,39 +5,49 @@ import java.util.stream.IntStream;
|
||||
|
||||
public class CellSample {
|
||||
|
||||
private List<Integer[]> cells;
|
||||
private List<String[]> cells;
|
||||
private Integer cdr1Freq;
|
||||
private String filename;
|
||||
|
||||
public CellSample(Integer numDistinctCells, Integer cdr1Freq){
|
||||
this.cdr1Freq = cdr1Freq;
|
||||
List<Integer> numbersCDR3 = new ArrayList<>();
|
||||
List<Integer> numbersCDR1 = new ArrayList<>();
|
||||
Integer numDistCDR3s = 2 * numDistinctCells + 1;
|
||||
//Assign consecutive integers for each CDR3. This ensures they are all unique.
|
||||
IntStream.range(1, numDistCDR3s + 1).forEach(i -> numbersCDR3.add(i));
|
||||
//After all CDR3s are assigned, start assigning consecutive integers to CDR1s
|
||||
//There will usually be fewer integers in the CDR1 list, which will allow repeats below
|
||||
IntStream.range(numDistCDR3s + 1, numDistCDR3s + 1 + (numDistCDR3s / cdr1Freq) + 1).forEach(i -> numbersCDR1.add(i));
|
||||
//randomize the order of the numbers in the lists
|
||||
Collections.shuffle(numbersCDR3);
|
||||
Collections.shuffle(numbersCDR1);
|
||||
|
||||
//Each cell represented by 4 values
|
||||
//two CDR3s, and two CDR1s. First two values are CDR3s (alpha, beta), second two are CDR1s (alpha, beta)
|
||||
List<Integer[]> distinctCells = new ArrayList<>();
|
||||
List<String[]> distinctCells = new ArrayList<>();
|
||||
for(int i = 0; i < numbersCDR3.size() - 1; i = i + 2){
|
||||
Integer tmpCDR3a = numbersCDR3.get(i);
|
||||
Integer tmpCDR3b = numbersCDR3.get(i+1);
|
||||
Integer tmpCDR1a = numbersCDR1.get(i % numbersCDR1.size());
|
||||
Integer tmpCDR1b = numbersCDR1.get((i+1) % numbersCDR1.size());
|
||||
Integer[] tmp = {tmpCDR3a, tmpCDR3b, tmpCDR1a, tmpCDR1b};
|
||||
//Go through entire CDR3 list once, make pairs of alphas and betas
|
||||
String tmpCDR3a = numbersCDR3.get(i).toString();
|
||||
String tmpCDR3b = numbersCDR3.get(i+1).toString();
|
||||
//Go through the (likely shorter) CDR1 list as many times as necessary, make pairs of alphas and betas
|
||||
String tmpCDR1a = numbersCDR1.get(i % numbersCDR1.size()).toString();
|
||||
String tmpCDR1b = numbersCDR1.get((i+1) % numbersCDR1.size()).toString();
|
||||
//Make the array representing the cell
|
||||
String[] tmp = {tmpCDR3a, tmpCDR3b, tmpCDR1a, tmpCDR1b};
|
||||
//Add the cell to the list of distinct cells
|
||||
distinctCells.add(tmp);
|
||||
}
|
||||
this.cells = distinctCells;
|
||||
this.filename = filename;
|
||||
}
|
||||
|
||||
public CellSample(List<Integer[]> cells, Integer cdr1Freq){
|
||||
public CellSample(List<String[]> cells, Integer cdr1Freq){
|
||||
this.cells = cells;
|
||||
this.cdr1Freq = cdr1Freq;
|
||||
}
|
||||
|
||||
public List<Integer[]> getCells(){
|
||||
public List<String[]> getCells(){
|
||||
return cells;
|
||||
}
|
||||
|
||||
@@ -49,4 +59,8 @@ public class CellSample {
|
||||
return cells.size();
|
||||
}
|
||||
|
||||
public String getFilename() { return filename; }
|
||||
|
||||
public void setFilename(String filename) { this.filename = filename; }
|
||||
|
||||
}
|
||||
|
||||
@@ -1,5 +1,9 @@
|
||||
import org.apache.commons.cli.*;
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.Arrays;
|
||||
import java.util.stream.Stream;
|
||||
|
||||
/*
|
||||
* Class for parsing options passed to program from command line
|
||||
*
|
||||
@@ -29,6 +33,12 @@ import org.apache.commons.cli.*;
|
||||
* cellfile : name of the cell sample file to use as input
|
||||
* platefile : name of the sample plate file to use as input
|
||||
* output : name of the output file
|
||||
* graphml : output a graphml file
|
||||
* binary : output a serialized binary object file
|
||||
* IF SIMULATING READ DEPTH, ALL THESE ARE REQUIRED. Absence indicates not simulating read depth
|
||||
* readdepth: number of reads per sequence
|
||||
* readerrorprob: probability of reading a sequence incorrectly
|
||||
* errcollisionprob: probability of two read errors being identical
|
||||
*
|
||||
* Match flags:
|
||||
* graphFile : name of graph and data file to use as input
|
||||
@@ -38,247 +48,203 @@ import org.apache.commons.cli.*;
|
||||
* minpercent : (optional) the minimum percent overlap to attempt a matching.
|
||||
* writefile : (optional) the filename to write results to
|
||||
* output : the values to print to System.out for piping
|
||||
* pv : (optional) calculate p-values
|
||||
*
|
||||
*/
|
||||
public class CommandLineInterface {
|
||||
|
||||
public static void startCLI(String[] args) {
|
||||
//These command line options are a big mess
|
||||
//Really, I don't think command line tools are expected to work in this many different modes
|
||||
//making cells, making plates, and matching are the sort of thing that UNIX philosophy would say
|
||||
//should be three separate programs.
|
||||
//There might be a way to do it with option parameters?
|
||||
|
||||
//main options set
|
||||
Options mainOptions = new Options();
|
||||
Option makeCells = Option.builder("cells")
|
||||
.longOpt("make-cells")
|
||||
.desc("Makes a file of distinct cells")
|
||||
.build();
|
||||
Option makePlate = Option.builder("plates")
|
||||
.longOpt("make-plates")
|
||||
.desc("Makes a sample plate file")
|
||||
.build();
|
||||
Option makeGraph = Option.builder("graph")
|
||||
.longOpt("make-graph")
|
||||
.desc("Makes a graph and data file")
|
||||
.build();
|
||||
Option matchCDR3 = Option.builder("match")
|
||||
.longOpt("match-cdr3")
|
||||
.desc("Match CDR3s. Requires a cell sample file and any number of plate files.")
|
||||
.build();
|
||||
OptionGroup mainGroup = new OptionGroup();
|
||||
mainGroup.addOption(makeCells);
|
||||
mainGroup.addOption(makePlate);
|
||||
mainGroup.addOption(makeGraph);
|
||||
mainGroup.addOption(matchCDR3);
|
||||
mainGroup.setRequired(true);
|
||||
mainOptions.addOptionGroup(mainGroup);
|
||||
|
||||
//Reuse clones of this for other options groups, rather than making it lots of times
|
||||
Option outputFile = Option.builder("o")
|
||||
.longOpt("output-file")
|
||||
.hasArg()
|
||||
.argName("filename")
|
||||
.desc("Name of output file")
|
||||
.build();
|
||||
mainOptions.addOption(outputFile);
|
||||
|
||||
//Options cellOptions = new Options();
|
||||
Option numCells = Option.builder("nc")
|
||||
.longOpt("num-cells")
|
||||
.desc("The number of distinct cells to generate")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.build();
|
||||
mainOptions.addOption(numCells);
|
||||
Option cdr1Freq = Option.builder("d")
|
||||
.longOpt("peptide-diversity-factor")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.desc("Number of distinct CDR3s for every CDR1")
|
||||
.build();
|
||||
mainOptions.addOption(cdr1Freq);
|
||||
//Option cellOutput = (Option) outputFile.clone();
|
||||
//cellOutput.setRequired(true);
|
||||
//mainOptions.addOption(cellOutput);
|
||||
|
||||
//Options plateOptions = new Options();
|
||||
Option inputCells = Option.builder("c")
|
||||
.longOpt("cell-file")
|
||||
.hasArg()
|
||||
.argName("file")
|
||||
.desc("The cell sample file used for filling wells")
|
||||
.build();
|
||||
mainOptions.addOption(inputCells);
|
||||
Option numWells = Option.builder("w")
|
||||
.longOpt("num-wells")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.desc("The number of wells on each plate")
|
||||
.build();
|
||||
mainOptions.addOption(numWells);
|
||||
Option numPlates = Option.builder("np")
|
||||
.longOpt("num-plates")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.desc("The number of plate files to output")
|
||||
.build();
|
||||
mainOptions.addOption(numPlates);
|
||||
//Option plateOutput = (Option) outputFile.clone();
|
||||
//plateOutput.setRequired(true);
|
||||
//plateOutput.setDescription("Prefix for plate output filenames");
|
||||
//mainOptions.addOption(plateOutput);
|
||||
Option plateErr = Option.builder("err")
|
||||
.longOpt("drop-out-rate")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.desc("Well drop-out rate. (Probability between 0 and 1)")
|
||||
.build();
|
||||
mainOptions.addOption(plateErr);
|
||||
Option plateConcentrations = Option.builder("t")
|
||||
.longOpt("t-cells-per-well")
|
||||
.hasArgs()
|
||||
.argName("number 1, number 2, ...")
|
||||
.desc("Number of T cells per well for each plate section")
|
||||
.build();
|
||||
mainOptions.addOption(plateConcentrations);
|
||||
|
||||
//different distributions, mutually exclusive
|
||||
OptionGroup plateDistributions = new OptionGroup();
|
||||
Option plateExp = Option.builder("exponential")
|
||||
.desc("Sample from distinct cells with exponential frequency distribution")
|
||||
.build();
|
||||
plateDistributions.addOption(plateExp);
|
||||
Option plateGaussian = Option.builder("gaussian")
|
||||
.desc("Sample from distinct cells with gaussain frequency distribution")
|
||||
.build();
|
||||
plateDistributions.addOption(plateGaussian);
|
||||
Option platePoisson = Option.builder("poisson")
|
||||
.desc("Sample from distinct cells with poisson frequency distribution")
|
||||
.build();
|
||||
plateDistributions.addOption(platePoisson);
|
||||
mainOptions.addOptionGroup(plateDistributions);
|
||||
|
||||
Option plateStdDev = Option.builder("stddev")
|
||||
.desc("Standard deviation for gaussian distribution")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.build();
|
||||
mainOptions.addOption(plateStdDev);
|
||||
|
||||
Option plateLambda = Option.builder("lambda")
|
||||
.desc("Lambda for exponential distribution")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.build();
|
||||
mainOptions.addOption(plateLambda);
|
||||
|
||||
|
||||
|
||||
//
|
||||
// String cellFile, String filename, Double stdDev,
|
||||
// Integer numWells, Integer numSections,
|
||||
// Integer[] concentrations, Double dropOutRate
|
||||
//
|
||||
|
||||
//Options matchOptions = new Options();
|
||||
inputCells.setDescription("The cell sample file to be used for matching.");
|
||||
mainOptions.addOption(inputCells);
|
||||
Option lowThresh = Option.builder("low")
|
||||
.longOpt("low-threshold")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.desc("Sets the minimum occupancy overlap to attempt matching")
|
||||
.build();
|
||||
mainOptions.addOption(lowThresh);
|
||||
Option highThresh = Option.builder("high")
|
||||
.longOpt("high-threshold")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.desc("Sets the maximum occupancy overlap to attempt matching")
|
||||
.build();
|
||||
mainOptions.addOption(highThresh);
|
||||
Option occDiff = Option.builder("occdiff")
|
||||
.longOpt("occupancy-difference")
|
||||
.hasArg()
|
||||
.argName("Number")
|
||||
.desc("Maximum difference in alpha/beta occupancy to attempt matching")
|
||||
.build();
|
||||
mainOptions.addOption(occDiff);
|
||||
Option overlapPer = Option.builder("ovper")
|
||||
.longOpt("overlap-percent")
|
||||
.hasArg()
|
||||
.argName("Percent")
|
||||
.desc("Minimum overlap percent to attempt matching (0 -100)")
|
||||
.build();
|
||||
mainOptions.addOption(overlapPer);
|
||||
Option inputPlates = Option.builder("p")
|
||||
.longOpt("plate-files")
|
||||
.hasArgs()
|
||||
.desc("Plate files to match")
|
||||
.build();
|
||||
mainOptions.addOption(inputPlates);
|
||||
|
||||
|
||||
//Options sets for the different modes
|
||||
Options mainOptions = buildMainOptions();
|
||||
Options cellOptions = buildCellOptions();
|
||||
Options plateOptions = buildPlateOptions();
|
||||
Options graphOptions = buildGraphOptions();
|
||||
Options matchOptions = buildMatchCDR3options();
|
||||
|
||||
CommandLineParser parser = new DefaultParser();
|
||||
try {
|
||||
CommandLine line = parser.parse(mainOptions, args);
|
||||
if(line.hasOption("match")){
|
||||
//line = parser.parse(mainOptions, args);
|
||||
//String cellFile = line.getOptionValue("c");
|
||||
String graphFile = line.getOptionValue("g");
|
||||
Integer lowThreshold = Integer.valueOf(line.getOptionValue(lowThresh));
|
||||
Integer highThreshold = Integer.valueOf(line.getOptionValue(highThresh));
|
||||
Integer occupancyDifference = Integer.valueOf(line.getOptionValue(occDiff));
|
||||
Integer overlapPercent = Integer.valueOf(line.getOptionValue(overlapPer));
|
||||
for(String plate: line.getOptionValues("p")) {
|
||||
matchCDR3s(graphFile, lowThreshold, highThreshold, occupancyDifference, overlapPercent);
|
||||
}
|
||||
try{
|
||||
CommandLine line = parser.parse(mainOptions, Arrays.copyOfRange(args, 0, 1));
|
||||
|
||||
if (line.hasOption("help")) {
|
||||
HelpFormatter formatter = new HelpFormatter();
|
||||
formatter.printHelp("BiGpairSEQ_Sim.jar", mainOptions);
|
||||
System.out.println();
|
||||
formatter.printHelp("BiGpairSEQ_Sim.jar -cells", cellOptions);
|
||||
System.out.println();
|
||||
formatter.printHelp("BiGpairSEQ_Sim.jar -plate", plateOptions);
|
||||
System.out.println();
|
||||
formatter.printHelp("BiGpairSEQ_Sim.jar -graph", graphOptions);
|
||||
System.out.println();
|
||||
formatter.printHelp("BiGpairSEQ_Sim.jar -match", matchOptions);
|
||||
}
|
||||
else if(line.hasOption("cells")){
|
||||
//line = parser.parse(mainOptions, args);
|
||||
else if (line.hasOption("version")) {
|
||||
System.out.println("BiGpairSEQ_Sim " + BiGpairSEQ.getVersion());
|
||||
}
|
||||
else if (line.hasOption("cells")) {
|
||||
line = parser.parse(cellOptions, Arrays.copyOfRange(args, 1, args.length));
|
||||
Integer number = Integer.valueOf(line.getOptionValue("n"));
|
||||
Integer diversity = Integer.valueOf(line.getOptionValue("d"));
|
||||
String filename = line.getOptionValue("o");
|
||||
Integer numDistCells = Integer.valueOf(line.getOptionValue("nc"));
|
||||
Integer freq = Integer.valueOf(line.getOptionValue("d"));
|
||||
makeCells(filename, numDistCells, freq);
|
||||
makeCells(filename, number, diversity);
|
||||
}
|
||||
else if(line.hasOption("plates")){
|
||||
//line = parser.parse(mainOptions, args);
|
||||
String cellFile = line.getOptionValue("c");
|
||||
String filenamePrefix = line.getOptionValue("o");
|
||||
Integer numWellsOnPlate = Integer.valueOf(line.getOptionValue("w"));
|
||||
Integer numPlatesToMake = Integer.valueOf(line.getOptionValue("np"));
|
||||
String[] concentrationsToUseString = line.getOptionValues("t");
|
||||
Integer numSections = concentrationsToUseString.length;
|
||||
|
||||
Integer[] concentrationsToUse = new Integer[numSections];
|
||||
for(int i = 0; i <numSections; i++){
|
||||
concentrationsToUse[i] = Integer.valueOf(concentrationsToUseString[i]);
|
||||
else if (line.hasOption("plate")) {
|
||||
line = parser.parse(plateOptions, Arrays.copyOfRange(args, 1, args.length));
|
||||
//get the cells
|
||||
String cellFilename = line.getOptionValue("c");
|
||||
CellSample cells = getCells(cellFilename);
|
||||
//get the rest of the parameters
|
||||
Integer[] populations;
|
||||
String outputFilename = line.getOptionValue("o");
|
||||
Integer numWells = Integer.parseInt(line.getOptionValue("w"));
|
||||
Double dropoutRate = Double.parseDouble(line.getOptionValue("d"));
|
||||
if (line.hasOption("random")) {
|
||||
//Array holding values of minimum and maximum populations
|
||||
Integer[] min_max = Stream.of(line.getOptionValues("random"))
|
||||
.mapToInt(Integer::parseInt)
|
||||
.boxed()
|
||||
.toArray(Integer[]::new);
|
||||
populations = BiGpairSEQ.getRand().ints(min_max[0], min_max[1] + 1)
|
||||
.limit(numWells)
|
||||
.boxed()
|
||||
.toArray(Integer[]::new);
|
||||
}
|
||||
Double dropOutRate = Double.valueOf(line.getOptionValue("err"));
|
||||
if(line.hasOption("exponential")){
|
||||
Double lambda = Double.valueOf(line.getOptionValue("lambda"));
|
||||
for(int i = 1; i <= numPlatesToMake; i++){
|
||||
makePlateExp(cellFile, filenamePrefix + i, lambda, numWellsOnPlate,
|
||||
concentrationsToUse,dropOutRate);
|
||||
}
|
||||
else if (line.hasOption("pop")) {
|
||||
populations = Stream.of(line.getOptionValues("pop"))
|
||||
.mapToInt(Integer::parseInt)
|
||||
.boxed()
|
||||
.toArray(Integer[]::new);
|
||||
}
|
||||
else if(line.hasOption("gaussian")){
|
||||
Double stdDev = Double.valueOf(line.getOptionValue("std-dev"));
|
||||
for(int i = 1; i <= numPlatesToMake; i++){
|
||||
makePlate(cellFile, filenamePrefix + i, stdDev, numWellsOnPlate,
|
||||
concentrationsToUse,dropOutRate);
|
||||
}
|
||||
else{
|
||||
populations = new Integer[1];
|
||||
populations[0] = 1;
|
||||
}
|
||||
//make the plate
|
||||
Plate plate;
|
||||
if (line.hasOption("poisson")) {
|
||||
Double stdDev = Math.sqrt(numWells);
|
||||
plate = new Plate(cells, cellFilename, numWells, populations, dropoutRate, stdDev);
|
||||
}
|
||||
else if (line.hasOption("gaussian")) {
|
||||
Double stdDev = Double.parseDouble(line.getOptionValue("stddev"));
|
||||
plate = new Plate(cells, cellFilename, numWells, populations, dropoutRate, stdDev);
|
||||
}
|
||||
else if (line.hasOption("zipf")) {
|
||||
Double zipfExponent = Double.parseDouble(line.getOptionValue("exp"));
|
||||
plate = new Plate(cells, cellFilename, numWells, populations, dropoutRate, zipfExponent);
|
||||
}
|
||||
else {
|
||||
assert line.hasOption("exponential");
|
||||
Double lambda = Double.parseDouble(line.getOptionValue("lambda"));
|
||||
plate = new Plate(cells, cellFilename, numWells, populations, dropoutRate, lambda);
|
||||
}
|
||||
PlateFileWriter writer = new PlateFileWriter(outputFilename, plate);
|
||||
writer.writePlateFile();
|
||||
}
|
||||
|
||||
else if (line.hasOption("graph")) { //Making a graph
|
||||
line = parser.parse(graphOptions, Arrays.copyOfRange(args, 1, args.length));
|
||||
String cellFilename = line.getOptionValue("c");
|
||||
String plateFilename = line.getOptionValue("p");
|
||||
String outputFilename = line.getOptionValue("o");
|
||||
//get cells
|
||||
CellSample cells = getCells(cellFilename);
|
||||
//get plate
|
||||
Plate plate = getPlate(plateFilename);
|
||||
GraphWithMapData graph;
|
||||
Integer readDepth = 1;
|
||||
Double readErrorRate = 0.0;
|
||||
Double errorCollisionRate = 0.0;
|
||||
Double realSequenceCollisionRate = 0.0;
|
||||
if (line.hasOption("rd")) {
|
||||
readDepth = Integer.parseInt(line.getOptionValue("rd"));
|
||||
}
|
||||
else if(line.hasOption("poisson")){
|
||||
for(int i = 1; i <= numPlatesToMake; i++){
|
||||
makePlatePoisson(cellFile, filenamePrefix + i, numWellsOnPlate,
|
||||
concentrationsToUse,dropOutRate);
|
||||
if (line.hasOption("err")) {
|
||||
readErrorRate = Double.parseDouble(line.getOptionValue("err"));
|
||||
}
|
||||
if (line.hasOption("errcoll")) {
|
||||
errorCollisionRate = Double.parseDouble(line.getOptionValue("errcoll"));
|
||||
}
|
||||
if (line.hasOption("realcoll")) {
|
||||
realSequenceCollisionRate = Double.parseDouble(line.getOptionValue("realcoll"));
|
||||
}
|
||||
graph = Simulator.makeCDR3Graph(cells, plate, readDepth, readErrorRate, errorCollisionRate,
|
||||
realSequenceCollisionRate, false);
|
||||
if (!line.hasOption("no-binary")) { //output binary file unless told not to
|
||||
GraphDataObjectWriter writer = new GraphDataObjectWriter(outputFilename, graph, false);
|
||||
writer.writeDataToFile();
|
||||
}
|
||||
if (line.hasOption("graphml")) { //if told to, output graphml file
|
||||
GraphMLFileWriter gmlwriter = new GraphMLFileWriter(outputFilename, graph);
|
||||
gmlwriter.writeGraphToFile();
|
||||
}
|
||||
}
|
||||
|
||||
else if (line.hasOption("match")) { //can add a flag for which match type in future, spit this in two
|
||||
line = parser.parse(matchOptions, Arrays.copyOfRange(args, 1, args.length));
|
||||
String graphFilename = line.getOptionValue("g");
|
||||
|
||||
String outputFilename;
|
||||
if(line.hasOption("o")) {
|
||||
outputFilename = line.getOptionValue("o");
|
||||
}
|
||||
else {
|
||||
outputFilename = null;
|
||||
}
|
||||
Integer minThreshold = Integer.parseInt(line.getOptionValue("min"));
|
||||
Integer maxThreshold = Integer.parseInt(line.getOptionValue("max"));
|
||||
int minOverlapPct;
|
||||
if (line.hasOption("minpct")) { //see if this filter is being used
|
||||
minOverlapPct = Integer.parseInt(line.getOptionValue("minpct"));
|
||||
}
|
||||
else {
|
||||
minOverlapPct = 0;
|
||||
}
|
||||
int maxOccupancyDiff;
|
||||
if (line.hasOption("maxdiff")) { //see if this filter is being used
|
||||
maxOccupancyDiff = Integer.parseInt(line.getOptionValue("maxdiff"));
|
||||
}
|
||||
else {
|
||||
maxOccupancyDiff = Integer.MAX_VALUE;
|
||||
}
|
||||
if (line.hasOption("pv")) {
|
||||
BiGpairSEQ.setCalculatePValue(true);
|
||||
}
|
||||
GraphWithMapData graph = getGraph(graphFilename);
|
||||
MatchingResult result = Simulator.matchCDR3s(graph, graphFilename, minThreshold, maxThreshold,
|
||||
maxOccupancyDiff, minOverlapPct, false, BiGpairSEQ.calculatePValue());
|
||||
if(outputFilename != null){
|
||||
MatchingFileWriter writer = new MatchingFileWriter(outputFilename, result);
|
||||
writer.writeResultsToFile();
|
||||
}
|
||||
//can put a bunch of ifs for outputting various things from the MatchingResult to System.out here
|
||||
//after I put those flags in the matchOptions
|
||||
if(line.hasOption("print-metadata")) {
|
||||
for (String k : result.getMetadata().keySet()) {
|
||||
System.out.println(k + ": " + result.getMetadata().get(k));
|
||||
}
|
||||
}
|
||||
if(line.hasOption("print-error")) {
|
||||
System.out.println("pairing error rate: " + result.getPairingErrorRate());
|
||||
}
|
||||
if(line.hasOption("print-attempt")) {
|
||||
System.out.println("pairing attempt rate: " +result.getPairingAttemptRate());
|
||||
}
|
||||
if(line.hasOption("print-correct")) {
|
||||
System.out.println("correct pairings: " + result.getCorrectPairingCount());
|
||||
}
|
||||
if(line.hasOption("print-incorrect")) {
|
||||
System.out.println("incorrect pairings: " + result.getIncorrectPairingCount());
|
||||
}
|
||||
if(line.hasOption("print-alphas")) {
|
||||
System.out.println("total alphas found: " + result.getAlphaCount());
|
||||
}
|
||||
if(line.hasOption("print-betas")) {
|
||||
System.out.println("total betas found: " + result.getBetaCount());
|
||||
}
|
||||
if(line.hasOption("print-time")) {
|
||||
System.out.println("simulation time (seconds): " + result.getSimulationTime());
|
||||
}
|
||||
}
|
||||
}
|
||||
catch (ParseException exp) {
|
||||
@@ -286,43 +252,324 @@ public class CommandLineInterface {
|
||||
}
|
||||
}
|
||||
|
||||
private static Option outputFileOption() {
|
||||
Option outputFile = Option.builder("o")
|
||||
.longOpt("output-file")
|
||||
.hasArg()
|
||||
.argName("filename")
|
||||
.desc("Name of output file")
|
||||
.required()
|
||||
.build();
|
||||
return outputFile;
|
||||
}
|
||||
|
||||
private static Options buildMainOptions() {
|
||||
Options mainOptions = new Options();
|
||||
Option help = Option.builder("help")
|
||||
.desc("Displays this help menu")
|
||||
.build();
|
||||
Option makeCells = Option.builder("cells")
|
||||
.longOpt("make-cells")
|
||||
.desc("Makes a cell sample file of distinct T cells")
|
||||
.build();
|
||||
Option makePlate = Option.builder("plate")
|
||||
.longOpt("make-plate")
|
||||
.desc("Makes a sample plate file. Requires a cell sample file.")
|
||||
.build();
|
||||
Option makeGraph = Option.builder("graph")
|
||||
.longOpt("make-graph")
|
||||
.desc("Makes a graph/data file. Requires a cell sample file and a sample plate file")
|
||||
.build();
|
||||
Option matchCDR3 = Option.builder("match")
|
||||
.longOpt("match-cdr3")
|
||||
.desc("Matches CDR3s. Requires a graph/data file.")
|
||||
.build();
|
||||
Option printVersion = Option.builder("version")
|
||||
.desc("Prints the program version number to stdout").build();
|
||||
OptionGroup mainGroup = new OptionGroup();
|
||||
mainGroup.addOption(help);
|
||||
mainGroup.addOption(printVersion);
|
||||
mainGroup.addOption(makeCells);
|
||||
mainGroup.addOption(makePlate);
|
||||
mainGroup.addOption(makeGraph);
|
||||
mainGroup.addOption(matchCDR3);
|
||||
mainGroup.setRequired(true);
|
||||
mainOptions.addOptionGroup(mainGroup);
|
||||
return mainOptions;
|
||||
}
|
||||
|
||||
private static Options buildCellOptions() {
|
||||
Options cellOptions = new Options();
|
||||
Option numCells = Option.builder("n")
|
||||
.longOpt("num-cells")
|
||||
.desc("The number of distinct cells to generate")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.required().build();
|
||||
Option cdr3Diversity = Option.builder("d")
|
||||
.longOpt("diversity-factor")
|
||||
.desc("The factor by which unique CDR3s outnumber unique CDR1s")
|
||||
.hasArg()
|
||||
.argName("factor")
|
||||
.required().build();
|
||||
cellOptions.addOption(numCells);
|
||||
cellOptions.addOption(cdr3Diversity);
|
||||
cellOptions.addOption(outputFileOption());
|
||||
return cellOptions;
|
||||
}
|
||||
|
||||
private static Options buildPlateOptions() {
|
||||
Options plateOptions = new Options();
|
||||
Option cellFile = Option.builder("c") // add this to plate options
|
||||
.longOpt("cell-file")
|
||||
.desc("The cell sample file to use")
|
||||
.hasArg()
|
||||
.argName("filename")
|
||||
.required().build();
|
||||
Option numWells = Option.builder("w")// add this to plate options
|
||||
.longOpt("wells")
|
||||
.desc("The number of wells on the sample plate")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.required().build();
|
||||
//options group for choosing with distribution to use
|
||||
OptionGroup distributions = new OptionGroup();// add this to plate options
|
||||
distributions.setRequired(true);
|
||||
Option poisson = Option.builder("poisson")
|
||||
.desc("Use a Poisson distribution for cell sample")
|
||||
.build();
|
||||
Option gaussian = Option.builder("gaussian")
|
||||
.desc("Use a Gaussian distribution for cell sample")
|
||||
.build();
|
||||
Option exponential = Option.builder("exponential")
|
||||
.desc("Use an exponential distribution for cell sample")
|
||||
.build();
|
||||
Option zipf = Option.builder("zipf")
|
||||
.desc("Use a Zipf distribution for cell sample")
|
||||
.build();
|
||||
distributions.addOption(poisson);
|
||||
distributions.addOption(gaussian);
|
||||
distributions.addOption(exponential);
|
||||
distributions.addOption(zipf);
|
||||
//options group for statistical distribution parameters
|
||||
OptionGroup statParams = new OptionGroup();// add this to plate options
|
||||
Option stdDev = Option.builder("stddev")
|
||||
.desc("If using -gaussian flag, standard deviation for distrbution")
|
||||
.hasArg()
|
||||
.argName("value")
|
||||
.build();
|
||||
Option lambda = Option.builder("lambda")
|
||||
.desc("If using -exponential flag, lambda value for distribution")
|
||||
.hasArg()
|
||||
.argName("value")
|
||||
.build();
|
||||
Option zipfExponent = Option.builder("exp")
|
||||
.desc("If using -zipf flag, exponent value for distribution")
|
||||
.hasArg()
|
||||
.argName("value")
|
||||
.build();
|
||||
statParams.addOption(stdDev);
|
||||
statParams.addOption(lambda);
|
||||
//Option group for random plate or set populations
|
||||
OptionGroup wellPopOptions = new OptionGroup(); // add this to plate options
|
||||
wellPopOptions.setRequired(true);
|
||||
Option randomWellPopulations = Option.builder("random")
|
||||
.desc("Randomize well populations on sample plate. Takes two arguments: the minimum possible population and the maximum possible population.")
|
||||
.hasArgs()
|
||||
.numberOfArgs(2)
|
||||
.argName("min> <max")
|
||||
.build();
|
||||
Option specificWellPopulations = Option.builder("pop")
|
||||
.desc("The well populations for each section of the sample plate. There will be as many sections as there are populations given.")
|
||||
.hasArgs()
|
||||
.argName("number [number]...")
|
||||
.build();
|
||||
Option dropoutRate = Option.builder("d") //add this to plate options
|
||||
.longOpt("dropout-rate")
|
||||
.hasArg()
|
||||
.desc("The sequence dropout rate due to amplification error. (0.0 - 1.0)")
|
||||
.argName("rate")
|
||||
.required()
|
||||
.build();
|
||||
wellPopOptions.addOption(randomWellPopulations);
|
||||
wellPopOptions.addOption(specificWellPopulations);
|
||||
plateOptions.addOption(cellFile);
|
||||
plateOptions.addOption(numWells);
|
||||
plateOptions.addOptionGroup(distributions);
|
||||
plateOptions.addOptionGroup(statParams);
|
||||
plateOptions.addOptionGroup(wellPopOptions);
|
||||
plateOptions.addOption(dropoutRate);
|
||||
plateOptions.addOption(zipfExponent);
|
||||
plateOptions.addOption(outputFileOption());
|
||||
return plateOptions;
|
||||
}
|
||||
|
||||
private static Options buildGraphOptions() {
|
||||
Options graphOptions = new Options();
|
||||
Option cellFilename = Option.builder("c")
|
||||
.longOpt("cell-file")
|
||||
.desc("Cell sample file to use for checking pairing accuracy")
|
||||
.hasArg()
|
||||
.argName("filename")
|
||||
.required().build();
|
||||
Option plateFilename = Option.builder("p")
|
||||
.longOpt("plate-filename")
|
||||
.desc("Sample plate file from which to construct graph")
|
||||
.hasArg()
|
||||
.argName("filename")
|
||||
.required().build();
|
||||
Option outputGraphML = Option.builder("graphml")
|
||||
.desc("(Optional) Output GraphML file")
|
||||
.build();
|
||||
Option outputSerializedBinary = Option.builder("nb")
|
||||
.longOpt("no-binary")
|
||||
.desc("(Optional) Don't output serialized binary file")
|
||||
.build();
|
||||
Option readDepth = Option.builder("rd")
|
||||
.longOpt("read-depth")
|
||||
.desc("(Optional) The number of times to read each sequence.")
|
||||
.hasArg()
|
||||
.argName("depth")
|
||||
.build();
|
||||
Option readErrorProb = Option.builder("err")
|
||||
.longOpt("read-error-prob")
|
||||
.desc("(Optional) The probability that a sequence will be misread. (0.0 - 1.0)")
|
||||
.hasArg()
|
||||
.argName("prob")
|
||||
.build();
|
||||
Option errorCollisionProb = Option.builder("errcoll")
|
||||
.longOpt("error-collision-prob")
|
||||
.desc("(Optional) The probability that two misreads will produce the same spurious sequence. (0.0 - 1.0)")
|
||||
.hasArg()
|
||||
.argName("prob")
|
||||
.build();
|
||||
Option realSequenceCollisionProb = Option.builder("realcoll")
|
||||
.longOpt("real-collision-prob")
|
||||
.desc("(Optional) The probability that a sequence will be misread " +
|
||||
"as another real sequence. (Only applies to unique misreads; after this has happened once, " +
|
||||
"future error collisions could produce the real sequence again) (0.0 - 1.0)")
|
||||
.hasArg()
|
||||
.argName("prob")
|
||||
.build();
|
||||
graphOptions.addOption(cellFilename);
|
||||
graphOptions.addOption(plateFilename);
|
||||
graphOptions.addOption(outputFileOption());
|
||||
graphOptions.addOption(outputGraphML);
|
||||
graphOptions.addOption(outputSerializedBinary);
|
||||
graphOptions.addOption(readDepth);
|
||||
graphOptions.addOption(readErrorProb);
|
||||
graphOptions.addOption(errorCollisionProb);
|
||||
graphOptions.addOption(realSequenceCollisionProb);
|
||||
return graphOptions;
|
||||
}
|
||||
|
||||
private static Options buildMatchCDR3options() {
|
||||
Options matchCDR3options = new Options();
|
||||
Option graphFilename = Option.builder("g")
|
||||
.longOpt("graph-file")
|
||||
.desc("The graph/data file to use")
|
||||
.hasArg()
|
||||
.argName("filename")
|
||||
.required().build();
|
||||
Option minOccupancyOverlap = Option.builder("min")
|
||||
.desc("The minimum number of shared wells to attempt to match a sequence pair")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.required().build();
|
||||
Option maxOccupancyOverlap = Option.builder("max")
|
||||
.desc("The maximum number of shared wells to attempt to match a sequence pair")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.required().build();
|
||||
Option minOverlapPercent = Option.builder("minpct")
|
||||
.desc("(Optional) The minimum percentage of a sequence's total occupancy shared by another sequence to attempt matching. (0 - 100) ")
|
||||
.hasArg()
|
||||
.argName("percent")
|
||||
.build();
|
||||
Option maxOccupancyDifference = Option.builder("maxdiff")
|
||||
.desc("(Optional) The maximum difference in total occupancy between two sequences to attempt matching.")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.build();
|
||||
Option outputFile = Option.builder("o") //can't call the method this time, because this one's optional
|
||||
.longOpt("output-file")
|
||||
.hasArg()
|
||||
.argName("filename")
|
||||
.desc("(Optional) Name of output the output file. If not present, no file will be written.")
|
||||
.build();
|
||||
Option pValue = Option.builder("pv") //can't call the method this time, because this one's optional
|
||||
.longOpt("p-value")
|
||||
.desc("(Optional) Calculate p-values for sequence pairs.")
|
||||
.build();
|
||||
matchCDR3options.addOption(graphFilename)
|
||||
.addOption(minOccupancyOverlap)
|
||||
.addOption(maxOccupancyOverlap)
|
||||
.addOption(minOverlapPercent)
|
||||
.addOption(maxOccupancyDifference)
|
||||
.addOption(outputFile)
|
||||
.addOption(pValue);
|
||||
|
||||
//options for output to System.out
|
||||
Option printAlphaCount = Option.builder().longOpt("print-alphas")
|
||||
.desc("(Optional) Print the number of distinct alpha sequences to stdout.").build();
|
||||
Option printBetaCount = Option.builder().longOpt("print-betas")
|
||||
.desc("(Optional) Print the number of distinct beta sequences to stdout.").build();
|
||||
Option printTime = Option.builder().longOpt("print-time")
|
||||
.desc("(Optional) Print the total simulation time to stdout.").build();
|
||||
Option printErrorRate = Option.builder().longOpt("print-error")
|
||||
.desc("(Optional) Print the pairing error rate to stdout").build();
|
||||
Option printAttempt = Option.builder().longOpt("print-attempt")
|
||||
.desc("(Optional) Print the pairing attempt rate to stdout").build();
|
||||
Option printCorrect = Option.builder().longOpt("print-correct")
|
||||
.desc("(Optional) Print the number of correct pairs to stdout").build();
|
||||
Option printIncorrect = Option.builder().longOpt("print-incorrect")
|
||||
.desc("(Optional) Print the number of incorrect pairs to stdout").build();
|
||||
Option printMetadata = Option.builder().longOpt("print-metadata")
|
||||
.desc("(Optional) Print a full summary of the matching results to stdout.").build();
|
||||
|
||||
matchCDR3options
|
||||
.addOption(printErrorRate)
|
||||
.addOption(printAttempt)
|
||||
.addOption(printCorrect)
|
||||
.addOption(printIncorrect)
|
||||
.addOption(printMetadata)
|
||||
.addOption(printAlphaCount)
|
||||
.addOption(printBetaCount)
|
||||
.addOption(printTime);
|
||||
return matchCDR3options;
|
||||
}
|
||||
|
||||
|
||||
|
||||
private static CellSample getCells(String cellFilename) {
|
||||
assert cellFilename != null;
|
||||
CellFileReader reader = new CellFileReader(cellFilename);
|
||||
return reader.getCellSample();
|
||||
}
|
||||
|
||||
private static Plate getPlate(String plateFilename) {
|
||||
assert plateFilename != null;
|
||||
PlateFileReader reader = new PlateFileReader(plateFilename);
|
||||
return reader.getSamplePlate();
|
||||
}
|
||||
|
||||
private static GraphWithMapData getGraph(String graphFilename) {
|
||||
assert graphFilename != null;
|
||||
try{
|
||||
GraphDataObjectReader reader = new GraphDataObjectReader(graphFilename, false);
|
||||
return reader.getData();
|
||||
|
||||
}
|
||||
catch (IOException ex) {
|
||||
ex.printStackTrace();
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
//for calling from command line
|
||||
public static void makeCells(String filename, Integer numCells, Integer cdr1Freq){
|
||||
public static void makeCells(String filename, Integer numCells, Integer cdr1Freq) {
|
||||
CellSample sample = new CellSample(numCells, cdr1Freq);
|
||||
CellFileWriter writer = new CellFileWriter(filename, sample);
|
||||
writer.writeCellsToFile();
|
||||
}
|
||||
|
||||
public static void makePlateExp(String cellFile, String filename, Double lambda,
|
||||
Integer numWells, Integer[] concentrations, Double dropOutRate){
|
||||
CellFileReader cellReader = new CellFileReader(cellFile);
|
||||
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
|
||||
samplePlate.fillWellsExponential(cellReader.getFilename(), cellReader.getListOfDistinctCellsDEPRECATED(), lambda);
|
||||
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
|
||||
writer.writePlateFile();
|
||||
}
|
||||
|
||||
private static void makePlatePoisson(String cellFile, String filename, Integer numWells,
|
||||
Integer[] concentrations, Double dropOutRate){
|
||||
CellFileReader cellReader = new CellFileReader(cellFile);
|
||||
Double stdDev = Math.sqrt(cellReader.getCellCountDEPRECATED());
|
||||
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
|
||||
samplePlate.fillWells(cellReader.getFilename(), cellReader.getListOfDistinctCellsDEPRECATED(), stdDev);
|
||||
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
|
||||
writer.writePlateFile();
|
||||
}
|
||||
|
||||
private static void makePlate(String cellFile, String filename, Double stdDev,
|
||||
Integer numWells, Integer[] concentrations, Double dropOutRate){
|
||||
CellFileReader cellReader = new CellFileReader(cellFile);
|
||||
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
|
||||
samplePlate.fillWells(cellReader.getFilename(), cellReader.getListOfDistinctCellsDEPRECATED(), stdDev);
|
||||
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
|
||||
writer.writePlateFile();
|
||||
}
|
||||
|
||||
private static void matchCDR3s(String graphFile, Integer lowThreshold, Integer highThreshold,
|
||||
Integer occupancyDifference, Integer overlapPercent) {
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
6
src/main/java/DistributionType.java
Normal file
6
src/main/java/DistributionType.java
Normal file
@@ -0,0 +1,6 @@
|
||||
public enum DistributionType {
|
||||
POISSON,
|
||||
GAUSSIAN,
|
||||
EXPONENTIAL,
|
||||
ZIPF
|
||||
}
|
||||
@@ -1,10 +1,12 @@
|
||||
import java.io.*;
|
||||
|
||||
public class GraphDataObjectReader {
|
||||
|
||||
private GraphWithMapData data;
|
||||
private String filename;
|
||||
|
||||
public GraphDataObjectReader(String filename) throws IOException {
|
||||
|
||||
public GraphDataObjectReader(String filename, boolean verbose) throws IOException {
|
||||
if(!filename.matches(".*\\.ser")){
|
||||
filename = filename + ".ser";
|
||||
}
|
||||
@@ -13,10 +15,13 @@ public class GraphDataObjectReader {
|
||||
BufferedInputStream fileIn = new BufferedInputStream(new FileInputStream(filename));
|
||||
ObjectInputStream in = new ObjectInputStream(fileIn))
|
||||
{
|
||||
System.out.println("Reading graph data from file. This may take some time");
|
||||
System.out.println("File I/O time is not included in results");
|
||||
if (verbose) {
|
||||
System.out.println("Reading graph data from file. This may take some time");
|
||||
System.out.println("File I/O time is not included in results");
|
||||
}
|
||||
data = (GraphWithMapData) in.readObject();
|
||||
} catch (FileNotFoundException | ClassNotFoundException ex) {
|
||||
System.out.println("Graph/data file " + filename + " not found.");
|
||||
ex.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
import org.jgrapht.Graph;
|
||||
|
||||
import java.io.BufferedOutputStream;
|
||||
import java.io.FileOutputStream;
|
||||
import java.io.IOException;
|
||||
@@ -7,6 +9,7 @@ public class GraphDataObjectWriter {
|
||||
|
||||
private GraphWithMapData data;
|
||||
private String filename;
|
||||
private boolean verbose = true;
|
||||
|
||||
public GraphDataObjectWriter(String filename, GraphWithMapData data) {
|
||||
if(!filename.matches(".*\\.ser")){
|
||||
@@ -16,13 +19,24 @@ public class GraphDataObjectWriter {
|
||||
this.data = data;
|
||||
}
|
||||
|
||||
public GraphDataObjectWriter(String filename, GraphWithMapData data, boolean verbose) {
|
||||
this.verbose = verbose;
|
||||
if(!filename.matches(".*\\.ser")){
|
||||
filename = filename + ".ser";
|
||||
}
|
||||
this.filename = filename;
|
||||
this.data = data;
|
||||
}
|
||||
|
||||
public void writeDataToFile() {
|
||||
try (BufferedOutputStream bufferedOut = new BufferedOutputStream(new FileOutputStream(filename));
|
||||
|
||||
ObjectOutputStream out = new ObjectOutputStream(bufferedOut);
|
||||
){
|
||||
System.out.println("Writing graph and occupancy data to file. This may take some time.");
|
||||
System.out.println("File I/O time is not included in results.");
|
||||
if(verbose) {
|
||||
System.out.println("Writing graph and occupancy data to file. This may take some time.");
|
||||
System.out.println("File I/O time is not included in results.");
|
||||
}
|
||||
out.writeObject(data);
|
||||
} catch (IOException ex) {
|
||||
ex.printStackTrace();
|
||||
|
||||
@@ -3,8 +3,8 @@ import org.jgrapht.graph.SimpleWeightedGraph;
|
||||
import org.jgrapht.nio.Attribute;
|
||||
import org.jgrapht.nio.AttributeType;
|
||||
import org.jgrapht.nio.DefaultAttribute;
|
||||
import org.jgrapht.nio.dot.DOTExporter;
|
||||
import org.jgrapht.nio.graphml.GraphMLExporter;
|
||||
import org.jgrapht.nio.graphml.GraphMLExporter.AttributeCategory;
|
||||
|
||||
import java.io.BufferedWriter;
|
||||
import java.io.IOException;
|
||||
@@ -12,14 +12,15 @@ import java.nio.file.Files;
|
||||
import java.nio.file.Path;
|
||||
import java.nio.file.StandardOpenOption;
|
||||
import java.util.HashMap;
|
||||
import java.util.LinkedHashMap;
|
||||
import java.util.Iterator;
|
||||
import java.util.Map;
|
||||
|
||||
public class GraphMLFileWriter {
|
||||
|
||||
String filename;
|
||||
SimpleWeightedGraph graph;
|
||||
GraphWithMapData data;
|
||||
|
||||
Map<String, Attribute> graphAttributes;
|
||||
|
||||
public GraphMLFileWriter(String filename, GraphWithMapData data) {
|
||||
if(!filename.matches(".*\\.graphml")){
|
||||
@@ -27,52 +28,86 @@ public class GraphMLFileWriter {
|
||||
}
|
||||
this.filename = filename;
|
||||
this.data = data;
|
||||
this.graph = data.getGraph();
|
||||
graphAttributes = createGraphAttributes();
|
||||
}
|
||||
|
||||
// public void writeGraphToFile() {
|
||||
// try(BufferedWriter writer = Files.newBufferedWriter(Path.of(filename), StandardOpenOption.CREATE_NEW);
|
||||
// ){
|
||||
// GraphMLExporter<SimpleWeightedGraph, BufferedWriter> exporter = new GraphMLExporter<>();
|
||||
// exporter.exportGraph(graph, writer);
|
||||
// } catch(IOException ex){
|
||||
// System.out.println("Could not make new file named "+filename);
|
||||
// System.err.println(ex);
|
||||
// }
|
||||
// }
|
||||
public GraphMLFileWriter(String filename, SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph) {
|
||||
if(!filename.matches(".*\\.graphml")){
|
||||
filename = filename + ".graphml";
|
||||
}
|
||||
this.filename = filename;
|
||||
this.graph = graph;
|
||||
}
|
||||
|
||||
private Map<String, Attribute> createGraphAttributes(){
|
||||
Map<String, Attribute> attributes = new HashMap<>();
|
||||
//Sample plate filename
|
||||
attributes.put("sample plate filename", DefaultAttribute.createAttribute(data.getPlateFilename()));
|
||||
// Number of wells
|
||||
attributes.put("well count", DefaultAttribute.createAttribute(data.getNumWells().toString()));
|
||||
//Well populations
|
||||
Integer[] wellPopulations = data.getWellPopulations();
|
||||
StringBuilder populationsStringBuilder = new StringBuilder();
|
||||
populationsStringBuilder.append(wellPopulations[0].toString());
|
||||
for(int i = 1; i < wellPopulations.length; i++){
|
||||
populationsStringBuilder.append(", ");
|
||||
populationsStringBuilder.append(wellPopulations[i].toString());
|
||||
}
|
||||
String wellPopulationsString = populationsStringBuilder.toString();
|
||||
attributes.put("well populations", DefaultAttribute.createAttribute(wellPopulationsString));
|
||||
attributes.put("read depth", DefaultAttribute.createAttribute(data.getReadDepth().toString()));
|
||||
attributes.put("read error rate", DefaultAttribute.createAttribute(data.getReadErrorRate().toString()));
|
||||
attributes.put("error collision rate", DefaultAttribute.createAttribute(data.getErrorCollisionRate().toString()));
|
||||
attributes.put("real sequence collision rate", DefaultAttribute.createAttribute(data.getRealSequenceCollisionRate()));
|
||||
return attributes;
|
||||
}
|
||||
|
||||
private Map<String, Attribute> createVertexAttributes(Vertex v){
|
||||
Map<String, Attribute> attributes = new HashMap<>();
|
||||
//sequence type
|
||||
attributes.put("type", DefaultAttribute.createAttribute(v.getType().name()));
|
||||
//sequence
|
||||
attributes.put("sequence", DefaultAttribute.createAttribute(v.getSequence()));
|
||||
//number of wells the sequence appears in
|
||||
attributes.put("occupancy", DefaultAttribute.createAttribute(v.getOccupancy()));
|
||||
//total number of times the sequence was read
|
||||
attributes.put("total read count", DefaultAttribute.createAttribute(v.getReadCount()));
|
||||
StringBuilder wellsAndReadCountsBuilder = new StringBuilder();
|
||||
Iterator<Map.Entry<Integer, Integer>> wellOccupancies = v.getWellOccupancies().entrySet().iterator();
|
||||
while (wellOccupancies.hasNext()) {
|
||||
Map.Entry<Integer, Integer> entry = wellOccupancies.next();
|
||||
wellsAndReadCountsBuilder.append(entry.getKey() + ":" + entry.getValue());
|
||||
if (wellOccupancies.hasNext()) {
|
||||
wellsAndReadCountsBuilder.append(", ");
|
||||
}
|
||||
}
|
||||
String wellsAndReadCounts = wellsAndReadCountsBuilder.toString();
|
||||
//the wells the sequence appears in and the read counts in those wells
|
||||
attributes.put("wells:read counts", DefaultAttribute.createAttribute(wellsAndReadCounts));
|
||||
return attributes;
|
||||
}
|
||||
|
||||
public void writeGraphToFile() {
|
||||
SimpleWeightedGraph graph = data.getGraph();
|
||||
Map<Integer, Integer> vertexToAlphaMap = data.getPlateVtoAMap();
|
||||
Map<Integer, Integer> vertexToBetaMap = data.getPlateVtoBMap();
|
||||
Map<Integer, Integer> alphaOccs = data.getAlphaWellCounts();
|
||||
Map<Integer, Integer> betaOccs = data.getBetaWellCounts();
|
||||
try(BufferedWriter writer = Files.newBufferedWriter(Path.of(filename), StandardOpenOption.CREATE_NEW);
|
||||
){
|
||||
//create exporter. Let the vertex labels be the unique ids for the vertices
|
||||
GraphMLExporter<Integer, SimpleWeightedGraph<Vertex, DefaultWeightedEdge>> exporter = new GraphMLExporter<>(v -> v.toString());
|
||||
GraphMLExporter<Vertex, SimpleWeightedGraph<Vertex, DefaultWeightedEdge>> exporter = new GraphMLExporter<>(v -> v.getVertexLabel().toString());
|
||||
//set to export weights
|
||||
exporter.setExportEdgeWeights(true);
|
||||
//Set graph attributes
|
||||
exporter.setGraphAttributeProvider( () -> graphAttributes);
|
||||
//set type, sequence, and occupancy attributes for each vertex
|
||||
exporter.setVertexAttributeProvider( v -> {
|
||||
Map<String, Attribute> attributes = new HashMap<>();
|
||||
if(vertexToAlphaMap.containsKey(v)) {
|
||||
attributes.put("type", DefaultAttribute.createAttribute("CDR3 Alpha"));
|
||||
attributes.put("sequence", DefaultAttribute.createAttribute(vertexToAlphaMap.get(v)));
|
||||
attributes.put("occupancy", DefaultAttribute.createAttribute(
|
||||
alphaOccs.get(vertexToAlphaMap.get(v))));
|
||||
}
|
||||
else if(vertexToBetaMap.containsKey(v)) {
|
||||
attributes.put("type", DefaultAttribute.createAttribute("CDR3 Beta"));
|
||||
attributes.put("sequence", DefaultAttribute.createAttribute(vertexToBetaMap.get(v)));
|
||||
attributes.put("occupancy", DefaultAttribute.createAttribute(
|
||||
betaOccs.get(vertexToBetaMap.get(v))));
|
||||
}
|
||||
return attributes;
|
||||
});
|
||||
exporter.setVertexAttributeProvider(this::createVertexAttributes);
|
||||
//register the attributes
|
||||
exporter.registerAttribute("type", GraphMLExporter.AttributeCategory.NODE, AttributeType.STRING);
|
||||
exporter.registerAttribute("sequence", GraphMLExporter.AttributeCategory.NODE, AttributeType.STRING);
|
||||
exporter.registerAttribute("occupancy", GraphMLExporter.AttributeCategory.NODE, AttributeType.STRING);
|
||||
for(String s : graphAttributes.keySet()) {
|
||||
exporter.registerAttribute(s, AttributeCategory.GRAPH, AttributeType.STRING);
|
||||
}
|
||||
exporter.registerAttribute("type", AttributeCategory.NODE, AttributeType.STRING);
|
||||
exporter.registerAttribute("sequence", AttributeCategory.NODE, AttributeType.STRING);
|
||||
exporter.registerAttribute("occupancy", AttributeCategory.NODE, AttributeType.STRING);
|
||||
exporter.registerAttribute("total read count", AttributeCategory.NODE, AttributeType.STRING);
|
||||
exporter.registerAttribute("wells:read counts", AttributeCategory.NODE, AttributeType.STRING);
|
||||
//export the graph
|
||||
exporter.exportGraph(graph, writer);
|
||||
} catch(IOException ex){
|
||||
@@ -81,4 +116,3 @@ public class GraphMLFileWriter {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1,91 +1,85 @@
|
||||
import org.jgrapht.graph.DefaultWeightedEdge;
|
||||
import org.jgrapht.graph.SimpleWeightedGraph;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.*;
|
||||
|
||||
public interface GraphModificationFunctions {
|
||||
|
||||
//remove over- and under-weight edges
|
||||
static List<Integer[]> filterByOverlapThresholds(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
|
||||
int low, int high, boolean saveEdges) {
|
||||
List<Integer[]> removedEdges = new ArrayList<>();
|
||||
//remove over- and under-weight edges, return removed edges
|
||||
static Map<DefaultWeightedEdge, Vertex[]> filterByOverlapThresholds(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
|
||||
int low, int high, boolean saveEdges) {
|
||||
Map<DefaultWeightedEdge, Vertex[]> removedEdges = new HashMap<>();
|
||||
Set<DefaultWeightedEdge> edgesToRemove = new HashSet<>();
|
||||
for (DefaultWeightedEdge e : graph.edgeSet()) {
|
||||
if ((graph.getEdgeWeight(e) > high) || (graph.getEdgeWeight(e) < low)) {
|
||||
if(saveEdges) {
|
||||
Integer source = graph.getEdgeSource(e);
|
||||
Integer target = graph.getEdgeTarget(e);
|
||||
Integer weight = (int) graph.getEdgeWeight(e);
|
||||
Integer[] edge = {source, target, weight};
|
||||
removedEdges.add(edge);
|
||||
}
|
||||
else {
|
||||
graph.setEdgeWeight(e, 0.0);
|
||||
Vertex[] vertices = {graph.getEdgeSource(e), graph.getEdgeTarget(e)};
|
||||
removedEdges.put(e, vertices);
|
||||
}
|
||||
edgesToRemove.add(e);
|
||||
}
|
||||
}
|
||||
if(saveEdges) {
|
||||
for (Integer[] edge : removedEdges) {
|
||||
graph.removeEdge(edge[0], edge[1]);
|
||||
}
|
||||
}
|
||||
edgesToRemove.forEach(graph::removeEdge);
|
||||
return removedEdges;
|
||||
}
|
||||
|
||||
//Remove edges for pairs with large occupancy discrepancy
|
||||
static List<Integer[]> filterByRelativeOccupancy(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
|
||||
Map<Integer, Integer> alphaWellCounts,
|
||||
Map<Integer, Integer> betaWellCounts,
|
||||
Map<Integer, Integer> plateVtoAMap,
|
||||
Map<Integer, Integer> plateVtoBMap,
|
||||
//Remove edges for pairs with large occupancy discrepancy, return removed edges
|
||||
static Map<DefaultWeightedEdge, Vertex[]> filterByRelativeOccupancy(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
|
||||
Integer maxOccupancyDifference, boolean saveEdges) {
|
||||
List<Integer[]> removedEdges = new ArrayList<>();
|
||||
Map<DefaultWeightedEdge, Vertex[]> removedEdges = new HashMap<>();
|
||||
Set<DefaultWeightedEdge> edgesToRemove = new HashSet<>();
|
||||
for (DefaultWeightedEdge e : graph.edgeSet()) {
|
||||
Integer alphaOcc = alphaWellCounts.get(plateVtoAMap.get(graph.getEdgeSource(e)));
|
||||
Integer betaOcc = betaWellCounts.get(plateVtoBMap.get(graph.getEdgeTarget(e)));
|
||||
Integer alphaOcc = graph.getEdgeSource(e).getOccupancy();
|
||||
Integer betaOcc = graph.getEdgeTarget(e).getOccupancy();
|
||||
if (Math.abs(alphaOcc - betaOcc) >= maxOccupancyDifference) {
|
||||
if (saveEdges) {
|
||||
Integer source = graph.getEdgeSource(e);
|
||||
Integer target = graph.getEdgeTarget(e);
|
||||
Integer weight = (int) graph.getEdgeWeight(e);
|
||||
Integer[] edge = {source, target, weight};
|
||||
removedEdges.add(edge);
|
||||
}
|
||||
else {
|
||||
graph.setEdgeWeight(e, 0.0);
|
||||
Vertex[] vertices = {graph.getEdgeSource(e), graph.getEdgeTarget(e)};
|
||||
removedEdges.put(e, vertices);
|
||||
}
|
||||
edgesToRemove.add(e);
|
||||
}
|
||||
}
|
||||
if(saveEdges) {
|
||||
for (Integer[] edge : removedEdges) {
|
||||
graph.removeEdge(edge[0], edge[1]);
|
||||
}
|
||||
}
|
||||
edgesToRemove.forEach(graph::removeEdge);
|
||||
return removedEdges;
|
||||
}
|
||||
|
||||
//Remove edges for pairs where overlap size is significantly lower than the well occupancy
|
||||
static List<Integer[]> filterByOverlapPercent(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
|
||||
Map<Integer, Integer> alphaWellCounts,
|
||||
Map<Integer, Integer> betaWellCounts,
|
||||
Map<Integer, Integer> plateVtoAMap,
|
||||
Map<Integer, Integer> plateVtoBMap,
|
||||
//Remove edges for pairs where overlap size is significantly lower than the well occupancy, return removed edges
|
||||
static Map<DefaultWeightedEdge, Vertex[]> filterByOverlapPercent(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
|
||||
Integer minOverlapPercent,
|
||||
boolean saveEdges) {
|
||||
List<Integer[]> removedEdges = new ArrayList<>();
|
||||
Map<DefaultWeightedEdge, Vertex[]> removedEdges = new HashMap<>();
|
||||
Set<DefaultWeightedEdge> edgesToRemove = new HashSet<>();
|
||||
for (DefaultWeightedEdge e : graph.edgeSet()) {
|
||||
Integer alphaOcc = alphaWellCounts.get(plateVtoAMap.get(graph.getEdgeSource(e)));
|
||||
Integer betaOcc = betaWellCounts.get(plateVtoBMap.get(graph.getEdgeTarget(e)));
|
||||
Integer alphaOcc = graph.getEdgeSource(e).getOccupancy();
|
||||
Integer betaOcc = graph.getEdgeTarget(e).getOccupancy();
|
||||
double weight = graph.getEdgeWeight(e);
|
||||
double min = minOverlapPercent / 100.0;
|
||||
if ((weight / alphaOcc < min) || (weight / betaOcc < min)) {
|
||||
if(saveEdges) {
|
||||
Integer source = graph.getEdgeSource(e);
|
||||
Integer target = graph.getEdgeTarget(e);
|
||||
if (saveEdges) {
|
||||
Vertex[] vertices = {graph.getEdgeSource(e), graph.getEdgeTarget(e)};
|
||||
removedEdges.put(e, vertices);
|
||||
}
|
||||
edgesToRemove.add(e);
|
||||
}
|
||||
}
|
||||
edgesToRemove.forEach(graph::removeEdge);
|
||||
return removedEdges;
|
||||
}
|
||||
|
||||
static Map<Vertex[], Integer> filterByRelativeReadCount (SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph, Integer threshold, boolean saveEdges) {
|
||||
Map<Vertex[], Integer> removedEdges = new HashMap<>();
|
||||
Boolean passes;
|
||||
for (DefaultWeightedEdge e : graph.edgeSet()) {
|
||||
Integer alphaReadCount = graph.getEdgeSource(e).getReadCount();
|
||||
Integer betaReadCount = graph.getEdgeTarget(e).getReadCount();
|
||||
passes = RelativeReadCountFilterFunction(threshold, alphaReadCount, betaReadCount);
|
||||
if (!passes) {
|
||||
if (saveEdges) {
|
||||
Vertex source = graph.getEdgeSource(e);
|
||||
Vertex target = graph.getEdgeTarget(e);
|
||||
Integer intWeight = (int) graph.getEdgeWeight(e);
|
||||
Integer[] edge = {source, target, intWeight};
|
||||
removedEdges.add(edge);
|
||||
Vertex[] edge = {source, target};
|
||||
removedEdges.put(edge, intWeight);
|
||||
}
|
||||
else {
|
||||
graph.setEdgeWeight(e, 0.0);
|
||||
@@ -93,19 +87,25 @@ public interface GraphModificationFunctions {
|
||||
}
|
||||
}
|
||||
if(saveEdges) {
|
||||
for (Integer[] edge : removedEdges) {
|
||||
for (Vertex[] edge : removedEdges.keySet()) {
|
||||
graph.removeEdge(edge[0], edge[1]);
|
||||
}
|
||||
}
|
||||
return removedEdges;
|
||||
}
|
||||
|
||||
static void addRemovedEdges(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
|
||||
List<Integer[]> removedEdges) {
|
||||
for (Integer[] edge : removedEdges) {
|
||||
DefaultWeightedEdge e = graph.addEdge(edge[0], edge[1]);
|
||||
graph.setEdgeWeight(e, (double) edge[2]);
|
||||
static Boolean RelativeReadCountFilterFunction(Integer threshold, Integer alphaReadCount, Integer betaReadCount) {
|
||||
return Math.abs(alphaReadCount - betaReadCount) < threshold;
|
||||
}
|
||||
|
||||
static void addRemovedEdges(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
|
||||
Map<DefaultWeightedEdge, Vertex[]> removedEdges) {
|
||||
for (DefaultWeightedEdge edge : removedEdges.keySet()) {
|
||||
Vertex[] vertices = removedEdges.get(edge);
|
||||
graph.addEdge(vertices[0], vertices[1], edge);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
@@ -6,41 +6,57 @@ import java.util.Map;
|
||||
//Can't just write the graph, because I need the occupancy data too.
|
||||
//Makes most sense to serialize object and write that to a file.
|
||||
//Which means there's no reason to split map data and graph data up.
|
||||
//Custom vertex class means a lot of the map data can now be encoded in the graph itself
|
||||
public class GraphWithMapData implements java.io.Serializable {
|
||||
|
||||
private String sourceFilename;
|
||||
private String cellFilename;
|
||||
private int cellSampleSize;
|
||||
private String plateFilename;
|
||||
private final SimpleWeightedGraph graph;
|
||||
private Integer numWells;
|
||||
private Integer[] wellPopulations;
|
||||
private Integer alphaCount;
|
||||
private Integer betaCount;
|
||||
private final Map<Integer, Integer> distCellsMapAlphaKey;
|
||||
private final Map<Integer, Integer> plateVtoAMap;
|
||||
private final Map<Integer, Integer> plateVtoBMap;
|
||||
private final Map<Integer, Integer> plateAtoVMap;
|
||||
private final Map<Integer, Integer> plateBtoVMap;
|
||||
private final Map<Integer, Integer> alphaWellCounts;
|
||||
private final Map<Integer, Integer> betaWellCounts;
|
||||
private final int numWells;
|
||||
private final Integer[] wellPopulations;
|
||||
private final int alphaCount;
|
||||
private final int betaCount;
|
||||
private final double dropoutRate;
|
||||
private final int readDepth;
|
||||
private final double readErrorRate;
|
||||
private final double errorCollisionRate;
|
||||
private final double realSequenceCollisionRate;
|
||||
private final Map<String, String> distCellsMapAlphaKey;
|
||||
// private final Map<Integer, Integer> plateVtoAMap;
|
||||
// private final Map<Integer, Integer> plateVtoBMap;
|
||||
// private final Map<Integer, Integer> plateAtoVMap;
|
||||
// private final Map<Integer, Integer> plateBtoVMap;
|
||||
// private final Map<Integer, Integer> alphaWellCounts;
|
||||
// private final Map<Integer, Integer> betaWellCounts;
|
||||
private final Duration time;
|
||||
|
||||
public GraphWithMapData(SimpleWeightedGraph graph, Integer numWells, Integer[] wellConcentrations,
|
||||
Integer alphaCount, Integer betaCount,
|
||||
Map<Integer, Integer> distCellsMapAlphaKey, Map<Integer, Integer> plateVtoAMap,
|
||||
Map<Integer,Integer> plateVtoBMap, Map<Integer, Integer> plateAtoVMap,
|
||||
Map<Integer, Integer> plateBtoVMap, Map<Integer, Integer> alphaWellCounts,
|
||||
Map<Integer, Integer> betaWellCounts, Duration time) {
|
||||
Map<String, String> distCellsMapAlphaKey, Integer alphaCount, Integer betaCount,
|
||||
Double dropoutRate, Integer readDepth, Double readErrorRate, Double errorCollisionRate,
|
||||
Double realSequenceCollisionRate, Duration time){
|
||||
|
||||
// Map<Integer, Integer> plateVtoAMap,
|
||||
// Map<Integer,Integer> plateVtoBMap, Map<Integer, Integer> plateAtoVMap,
|
||||
// Map<Integer, Integer> plateBtoVMap, Map<Integer, Integer> alphaWellCounts,
|
||||
// Map<Integer, Integer> betaWellCounts,) {
|
||||
this.graph = graph;
|
||||
this.numWells = numWells;
|
||||
this.wellPopulations = wellConcentrations;
|
||||
this.alphaCount = alphaCount;
|
||||
this.betaCount = betaCount;
|
||||
this.distCellsMapAlphaKey = distCellsMapAlphaKey;
|
||||
this.plateVtoAMap = plateVtoAMap;
|
||||
this.plateVtoBMap = plateVtoBMap;
|
||||
this.plateAtoVMap = plateAtoVMap;
|
||||
this.plateBtoVMap = plateBtoVMap;
|
||||
this.alphaWellCounts = alphaWellCounts;
|
||||
this.betaWellCounts = betaWellCounts;
|
||||
// this.plateVtoAMap = plateVtoAMap;
|
||||
// this.plateVtoBMap = plateVtoBMap;
|
||||
// this.plateAtoVMap = plateAtoVMap;
|
||||
// this.plateBtoVMap = plateBtoVMap;
|
||||
// this.alphaWellCounts = alphaWellCounts;
|
||||
// this.betaWellCounts = betaWellCounts;
|
||||
this.dropoutRate = dropoutRate;
|
||||
this.readDepth = readDepth;
|
||||
this.readErrorRate = readErrorRate;
|
||||
this.errorCollisionRate = errorCollisionRate;
|
||||
this.realSequenceCollisionRate = realSequenceCollisionRate;
|
||||
this.time = time;
|
||||
}
|
||||
|
||||
@@ -64,43 +80,65 @@ public class GraphWithMapData implements java.io.Serializable {
|
||||
return betaCount;
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getDistCellsMapAlphaKey() {
|
||||
public Map<String, String> getDistCellsMapAlphaKey() {
|
||||
return distCellsMapAlphaKey;
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getPlateVtoAMap() {
|
||||
return plateVtoAMap;
|
||||
}
|
||||
// public Map<Integer, Integer> getPlateVtoAMap() {
|
||||
// return plateVtoAMap;
|
||||
// }
|
||||
//
|
||||
// public Map<Integer, Integer> getPlateVtoBMap() {
|
||||
// return plateVtoBMap;
|
||||
// }
|
||||
//
|
||||
// public Map<Integer, Integer> getPlateAtoVMap() {
|
||||
// return plateAtoVMap;
|
||||
// }
|
||||
//
|
||||
// public Map<Integer, Integer> getPlateBtoVMap() {
|
||||
// return plateBtoVMap;
|
||||
// }
|
||||
//
|
||||
// public Map<Integer, Integer> getAlphaWellCounts() {
|
||||
// return alphaWellCounts;
|
||||
// }
|
||||
//
|
||||
// public Map<Integer, Integer> getBetaWellCounts() {
|
||||
// return betaWellCounts;
|
||||
// }
|
||||
|
||||
public Map<Integer, Integer> getPlateVtoBMap() {
|
||||
return plateVtoBMap;
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getPlateAtoVMap() {
|
||||
return plateAtoVMap;
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getPlateBtoVMap() {
|
||||
return plateBtoVMap;
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getAlphaWellCounts() {
|
||||
return alphaWellCounts;
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getBetaWellCounts() {
|
||||
return betaWellCounts;
|
||||
}
|
||||
public Integer getReadDepth() { return readDepth; }
|
||||
|
||||
public Duration getTime() {
|
||||
return time;
|
||||
}
|
||||
|
||||
public void setSourceFilename(String filename) {
|
||||
this.sourceFilename = filename;
|
||||
public void setCellFilename(String filename) { this.cellFilename = filename; }
|
||||
|
||||
public String getCellFilename() { return this.cellFilename; }
|
||||
|
||||
public Integer getCellSampleSize() { return this.cellSampleSize; }
|
||||
|
||||
public void setCellSampleSize(int size) { this.cellSampleSize = size;}
|
||||
|
||||
public void setPlateFilename(String filename) {
|
||||
this.plateFilename = filename;
|
||||
}
|
||||
|
||||
public String getSourceFilename() {
|
||||
return sourceFilename;
|
||||
public String getPlateFilename() {
|
||||
return plateFilename;
|
||||
}
|
||||
|
||||
public Double getReadErrorRate() {
|
||||
return readErrorRate;
|
||||
}
|
||||
|
||||
public Double getErrorCollisionRate() {
|
||||
return errorCollisionRate;
|
||||
}
|
||||
|
||||
public Double getRealSequenceCollisionRate() { return realSequenceCollisionRate; }
|
||||
|
||||
public Double getDropoutRate() { return dropoutRate; }
|
||||
}
|
||||
|
||||
4
src/main/java/HeapType.java
Normal file
4
src/main/java/HeapType.java
Normal file
@@ -0,0 +1,4 @@
|
||||
public enum HeapType {
|
||||
FIBONACCI,
|
||||
PAIRING
|
||||
}
|
||||
@@ -89,14 +89,12 @@ public class InteractiveInterface {
|
||||
private static void makePlate() {
|
||||
String cellFile = null;
|
||||
String filename = null;
|
||||
Double stdDev = 0.0;
|
||||
Double parameter = 0.0;
|
||||
Integer numWells = 0;
|
||||
Integer numSections;
|
||||
Integer[] populations = {1};
|
||||
Double dropOutRate = 0.0;
|
||||
boolean poisson = false;
|
||||
boolean exponential = false;
|
||||
double lambda = 1.5;
|
||||
;
|
||||
try {
|
||||
System.out.println("\nSimulated sample plates consist of:");
|
||||
System.out.println("* a number of wells");
|
||||
@@ -114,33 +112,46 @@ public class InteractiveInterface {
|
||||
System.out.println("1) Poisson");
|
||||
System.out.println("2) Gaussian");
|
||||
System.out.println("3) Exponential");
|
||||
System.out.println("(Note: approximate distribution in original paper is exponential, lambda = 0.6)");
|
||||
System.out.println("(lambda value approximated from slope of log-log graph in figure 4c)");
|
||||
System.out.println("4) Zipf");
|
||||
|
||||
System.out.println("(Note: wider distributions are more memory intensive to match)");
|
||||
System.out.print("Enter selection value: ");
|
||||
input = sc.nextInt();
|
||||
switch (input) {
|
||||
case 1 -> poisson = true;
|
||||
case 1 -> {
|
||||
BiGpairSEQ.setDistributionType(DistributionType.POISSON);
|
||||
}
|
||||
case 2 -> {
|
||||
BiGpairSEQ.setDistributionType(DistributionType.GAUSSIAN);
|
||||
System.out.println("How many distinct T-cells within one standard deviation of peak frequency?");
|
||||
System.out.println("(Note: wider distributions are more memory intensive to match)");
|
||||
stdDev = sc.nextDouble();
|
||||
if (stdDev <= 0.0) {
|
||||
parameter = sc.nextDouble();
|
||||
if (parameter <= 0.0) {
|
||||
throw new InputMismatchException("Value must be positive.");
|
||||
}
|
||||
}
|
||||
case 3 -> {
|
||||
exponential = true;
|
||||
BiGpairSEQ.setDistributionType(DistributionType.EXPONENTIAL);
|
||||
System.out.print("Please enter lambda value for exponential distribution: ");
|
||||
lambda = sc.nextDouble();
|
||||
if (lambda <= 0.0) {
|
||||
lambda = 0.6;
|
||||
System.out.println("Value must be positive. Defaulting to 0.6.");
|
||||
parameter = sc.nextDouble();
|
||||
if (parameter <= 0.0) {
|
||||
parameter = 1.4;
|
||||
System.out.println("Value must be positive. Defaulting to 1.4.");
|
||||
}
|
||||
}
|
||||
case 4 -> {
|
||||
BiGpairSEQ.setDistributionType(DistributionType.ZIPF);
|
||||
System.out.print("Please enter exponent value for Zipf distribution: ");
|
||||
parameter = sc.nextDouble();
|
||||
if (parameter <= 0.0) {
|
||||
parameter = 1.4;
|
||||
System.out.println("Value must be positive. Defaulting to 1.4.");
|
||||
}
|
||||
}
|
||||
default -> {
|
||||
System.out.println("Invalid input. Defaulting to exponential.");
|
||||
exponential = true;
|
||||
parameter = 1.4;
|
||||
BiGpairSEQ.setDistributionType(DistributionType.EXPONENTIAL);
|
||||
}
|
||||
}
|
||||
System.out.print("\nNumber of wells on plate: ");
|
||||
@@ -226,18 +237,17 @@ public class InteractiveInterface {
|
||||
assert filename != null;
|
||||
Plate samplePlate;
|
||||
PlateFileWriter writer;
|
||||
if(exponential){
|
||||
samplePlate = new Plate(numWells, dropOutRate, populations);
|
||||
samplePlate.fillWellsExponential(cellFile, cells.getCells(), lambda);
|
||||
writer = new PlateFileWriter(filename, samplePlate);
|
||||
}
|
||||
else {
|
||||
if (poisson) {
|
||||
stdDev = Math.sqrt(cells.getCellCount()); //gaussian with square root of elements approximates poisson
|
||||
DistributionType type = BiGpairSEQ.getDistributionType();
|
||||
switch(type) {
|
||||
case POISSON -> {
|
||||
parameter = Math.sqrt(cells.getCellCount()); //gaussian with square root of elements approximates poisson
|
||||
samplePlate = new Plate(cells, cellFile, numWells, populations, dropOutRate, parameter);
|
||||
writer = new PlateFileWriter(filename, samplePlate);
|
||||
}
|
||||
default -> {
|
||||
samplePlate = new Plate(cells, cellFile, numWells, populations, dropOutRate, parameter);
|
||||
writer = new PlateFileWriter(filename, samplePlate);
|
||||
}
|
||||
samplePlate = new Plate(numWells, dropOutRate, populations);
|
||||
samplePlate.fillWells(cellFile, cells.getCells(), stdDev);
|
||||
writer = new PlateFileWriter(filename, samplePlate);
|
||||
}
|
||||
System.out.println("Writing Sample Plate to file");
|
||||
writer.writePlateFile();
|
||||
@@ -252,6 +262,12 @@ public class InteractiveInterface {
|
||||
String filename = null;
|
||||
String cellFile = null;
|
||||
String plateFile = null;
|
||||
Boolean simulateReadDepth = false;
|
||||
//number of times to read each sequence in a well
|
||||
int readDepth = 1;
|
||||
double readErrorRate = 0.0;
|
||||
double errorCollisionRate = 0.0;
|
||||
double realSequenceCollisionRate = 0.0;
|
||||
try {
|
||||
String str = "\nGenerating bipartite weighted graph encoding occupancy overlap data ";
|
||||
str = str.concat("\nrequires a cell sample file and a sample plate file.");
|
||||
@@ -260,7 +276,39 @@ public class InteractiveInterface {
|
||||
cellFile = sc.next();
|
||||
System.out.print("\nPlease enter name of an existing sample plate file: ");
|
||||
plateFile = sc.next();
|
||||
System.out.println("\nThe graph and occupancy data will be written to a serialized binary file.");
|
||||
System.out.println("\nEnable simulation of sequence read depth and sequence read errors? (y/n)");
|
||||
String ans = sc.next();
|
||||
Pattern pattern = Pattern.compile("(?:yes|y)", Pattern.CASE_INSENSITIVE);
|
||||
Matcher matcher = pattern.matcher(ans);
|
||||
if(matcher.matches()){
|
||||
simulateReadDepth = true;
|
||||
}
|
||||
if (simulateReadDepth) {
|
||||
System.out.print("\nPlease enter the read depth (the integer number of times a sequence is read): ");
|
||||
readDepth = sc.nextInt();
|
||||
if(readDepth < 1) {
|
||||
throw new InputMismatchException("The read depth must be an integer >= 1");
|
||||
}
|
||||
System.out.println("\nPlease enter the read error probability (0.0 to 1.0)");
|
||||
System.out.print("(The probability that a sequence will be misread): ");
|
||||
readErrorRate = sc.nextDouble();
|
||||
if(readErrorRate < 0.0 || readErrorRate > 1.0) {
|
||||
throw new InputMismatchException("The read error probability must be in the range [0.0, 1.0]");
|
||||
}
|
||||
System.out.println("\nPlease enter the error collision probability (0.0 to 1.0)");
|
||||
System.out.print("(The probability of a sequence being misread in a way it has been misread before): ");
|
||||
errorCollisionRate = sc.nextDouble();
|
||||
if(errorCollisionRate < 0.0 || errorCollisionRate > 1.0) {
|
||||
throw new InputMismatchException("The error collision probability must be an in the range [0.0, 1.0]");
|
||||
}
|
||||
System.out.println("\nPlease enter the real sequence collision probability (0.0 to 1.0)");
|
||||
System.out.print("(The probability that a (non-collision) misread produces a different, real sequence): ");
|
||||
realSequenceCollisionRate = sc.nextDouble();
|
||||
if(realSequenceCollisionRate < 0.0 || realSequenceCollisionRate > 1.0) {
|
||||
throw new InputMismatchException("The real sequence collision probability must be an in the range [0.0, 1.0]");
|
||||
}
|
||||
}
|
||||
System.out.println("\nThe graph and occupancy data will be written to a file.");
|
||||
System.out.print("Please enter a name for the output file: ");
|
||||
filename = sc.next();
|
||||
} catch (InputMismatchException ex) {
|
||||
@@ -292,7 +340,7 @@ public class InteractiveInterface {
|
||||
else {
|
||||
System.out.println("Reading Sample Plate file: " + plateFile);
|
||||
PlateFileReader plateReader = new PlateFileReader(plateFile);
|
||||
plate = new Plate(plateReader.getFilename(), plateReader.getWells());
|
||||
plate = plateReader.getSamplePlate();
|
||||
if(BiGpairSEQ.cachePlate()) {
|
||||
BiGpairSEQ.setPlateInMemory(plate, plateFile);
|
||||
}
|
||||
@@ -306,8 +354,8 @@ public class InteractiveInterface {
|
||||
System.out.println("Returning to main menu.");
|
||||
}
|
||||
else{
|
||||
List<Integer[]> cells = cellSample.getCells();
|
||||
GraphWithMapData data = Simulator.makeGraph(cells, plate, true);
|
||||
GraphWithMapData data = Simulator.makeCDR3Graph(cellSample, plate, readDepth, readErrorRate,
|
||||
errorCollisionRate, realSequenceCollisionRate, true);
|
||||
assert filename != null;
|
||||
if(BiGpairSEQ.outputBinary()) {
|
||||
GraphDataObjectWriter dataWriter = new GraphDataObjectWriter(filename, data);
|
||||
@@ -378,7 +426,7 @@ public class InteractiveInterface {
|
||||
data = BiGpairSEQ.getGraphInMemory();
|
||||
}
|
||||
else {
|
||||
GraphDataObjectReader dataReader = new GraphDataObjectReader(graphFilename);
|
||||
GraphDataObjectReader dataReader = new GraphDataObjectReader(graphFilename, true);
|
||||
data = dataReader.getData();
|
||||
if(BiGpairSEQ.cacheGraph()) {
|
||||
BiGpairSEQ.setGraphInMemory(data, graphFilename);
|
||||
@@ -386,7 +434,7 @@ public class InteractiveInterface {
|
||||
}
|
||||
//simulate matching
|
||||
MatchingResult results = Simulator.matchCDR3s(data, graphFilename, lowThreshold, highThreshold, maxOccupancyDiff,
|
||||
minOverlapPercent, true);
|
||||
minOverlapPercent, true, BiGpairSEQ.calculatePValue());
|
||||
//write results to file
|
||||
assert filename != null;
|
||||
MatchingFileWriter writer = new MatchingFileWriter(filename, results);
|
||||
@@ -507,8 +555,9 @@ public class InteractiveInterface {
|
||||
System.out.println("2) Turn " + getOnOff(!BiGpairSEQ.cachePlate()) + " plate file caching");
|
||||
System.out.println("3) Turn " + getOnOff(!BiGpairSEQ.cacheGraph()) + " graph/data file caching");
|
||||
System.out.println("4) Turn " + getOnOff(!BiGpairSEQ.outputBinary()) + " serialized binary graph output");
|
||||
System.out.println("5) Turn " + getOnOff(!BiGpairSEQ.outputGraphML()) + " GraphML graph output");
|
||||
System.out.println("6) Maximum weight matching algorithm options");
|
||||
System.out.println("5) Turn " + getOnOff(!BiGpairSEQ.outputGraphML()) + " GraphML graph output (for data portability to other programs)");
|
||||
System.out.println("6) Turn " + getOnOff(!BiGpairSEQ.calculatePValue()) + " calculation of p-values");
|
||||
System.out.println("7) Maximum weight matching algorithm options");
|
||||
System.out.println("0) Return to main menu");
|
||||
try {
|
||||
input = sc.nextInt();
|
||||
@@ -518,7 +567,8 @@ public class InteractiveInterface {
|
||||
case 3 -> BiGpairSEQ.setCacheGraph(!BiGpairSEQ.cacheGraph());
|
||||
case 4 -> BiGpairSEQ.setOutputBinary(!BiGpairSEQ.outputBinary());
|
||||
case 5 -> BiGpairSEQ.setOutputGraphML(!BiGpairSEQ.outputGraphML());
|
||||
case 6 -> algorithmOptions();
|
||||
case 6 -> BiGpairSEQ.setCalculatePValue(!BiGpairSEQ.calculatePValue());
|
||||
case 7 -> algorithmOptions();
|
||||
case 0 -> backToMain = true;
|
||||
default -> System.out.println("Invalid input");
|
||||
}
|
||||
@@ -544,24 +594,37 @@ public class InteractiveInterface {
|
||||
boolean backToOptions = false;
|
||||
while(!backToOptions) {
|
||||
System.out.println("\n---------ALGORITHM OPTIONS----------");
|
||||
System.out.println("1) Use scaling algorithm by Duan and Su.");
|
||||
System.out.println("2) Use LEDA book algorithm with Fibonacci heap priority queue");
|
||||
System.out.println("3) Use LEDA book algorithm with pairing heap priority queue");
|
||||
System.out.println("1) Use Hungarian algorithm with Fibonacci heap priority queue");
|
||||
System.out.println("2) Use Hungarian algorithm with pairing heap priority queue");
|
||||
System.out.println("3) Use auction algorithm");
|
||||
System.out.println("4) Use integer weight scaling algorithm by Duan and Su. (buggy, not yet fully implemented!)");
|
||||
System.out.println("0) Return to Options menu");
|
||||
try {
|
||||
input = sc.nextInt();
|
||||
switch (input) {
|
||||
case 1 -> System.out.println("This option is not yet implemented. Choose another.");
|
||||
case 2 -> {
|
||||
case 1 -> {
|
||||
BiGpairSEQ.setHungarianAlgorithm();
|
||||
BiGpairSEQ.setFibonacciHeap();
|
||||
System.out.println("MWM algorithm set to LEDA with Fibonacci heap");
|
||||
System.out.println("MWM algorithm set to Hungarian with Fibonacci heap");
|
||||
backToOptions = true;
|
||||
}
|
||||
case 2 -> {
|
||||
BiGpairSEQ.setHungarianAlgorithm();
|
||||
BiGpairSEQ.setPairingHeap();
|
||||
System.out.println("MWM algorithm set to Hungarian with pairing heap");
|
||||
backToOptions = true;
|
||||
}
|
||||
case 3 -> {
|
||||
BiGpairSEQ.setPairingHeap();
|
||||
System.out.println("MWM algorithm set to LEDA with pairing heap");
|
||||
BiGpairSEQ.setAuctionAlgorithm();
|
||||
System.out.println("MWM algorithm set to auction");
|
||||
backToOptions = true;
|
||||
}
|
||||
case 4 -> {
|
||||
System.out.println("Scaling integer weight MWM algorithm not yet fully implemented. Sorry.");
|
||||
// BiGpairSEQ.setIntegerWeightScalingAlgorithm();
|
||||
// System.out.println("MWM algorithm set to integer weight scaling algorithm of Duan and Su");
|
||||
// backToOptions = true;
|
||||
}
|
||||
case 0 -> backToOptions = true;
|
||||
default -> System.out.println("Invalid input");
|
||||
}
|
||||
@@ -573,6 +636,8 @@ public class InteractiveInterface {
|
||||
}
|
||||
|
||||
private static void acknowledge(){
|
||||
System.out.println("BiGpairSEQ_Sim " + BiGpairSEQ.getVersion());
|
||||
System.out.println();
|
||||
System.out.println("This program simulates BiGpairSEQ, a graph theory based adaptation");
|
||||
System.out.println("of the pairSEQ algorithm for pairing T cell receptor sequences.");
|
||||
System.out.println();
|
||||
|
||||
@@ -9,27 +9,34 @@ public class MatchingResult {
|
||||
private final List<String> comments;
|
||||
private final List<String> headers;
|
||||
private final List<List<String>> allResults;
|
||||
private final Map<Integer, Integer> matchMap;
|
||||
private final Duration time;
|
||||
private final Map<String, String> matchMap;
|
||||
|
||||
public MatchingResult(Map<String, String> metadata, List<String> headers,
|
||||
List<List<String>> allResults, Map<Integer, Integer>matchMap, Duration time){
|
||||
List<List<String>> allResults, Map<String, String>matchMap){
|
||||
/*
|
||||
* POSSIBLE KEYS FOR METADATA MAP ARE:
|
||||
* sample plate filename *
|
||||
* graph filename *
|
||||
* matching weight *
|
||||
* well populations *
|
||||
* total alphas found *
|
||||
* total betas found *
|
||||
* high overlap threshold
|
||||
* low overlap threshold
|
||||
* maximum occupancy difference
|
||||
* minimum overlap percent
|
||||
* pairing attempt rate
|
||||
* correct pairing count
|
||||
* incorrect pairing count
|
||||
* pairing error rate
|
||||
* simulation time
|
||||
* sequence read depth *
|
||||
* sequence read error rate *
|
||||
* read error collision rate *
|
||||
* total alphas read from plate *
|
||||
* total betas read from plate *
|
||||
* alphas in graph (after pre-filtering) *
|
||||
* betas in graph (after pre-filtering) *
|
||||
* high overlap threshold for pairing *
|
||||
* low overlap threshold for pairing *
|
||||
* maximum occupancy difference for pairing *
|
||||
* minimum overlap percent for pairing *
|
||||
* pairing attempt rate *
|
||||
* correct pairing count *
|
||||
* incorrect pairing count *
|
||||
* pairing error rate *
|
||||
* time to generate graph (seconds) *
|
||||
* time to pair sequences (seconds) *
|
||||
* total simulation time (seconds) *
|
||||
*/
|
||||
this.metadata = metadata;
|
||||
this.comments = new ArrayList<>();
|
||||
@@ -39,8 +46,6 @@ public class MatchingResult {
|
||||
this.headers = headers;
|
||||
this.allResults = allResults;
|
||||
this.matchMap = matchMap;
|
||||
this.time = time;
|
||||
|
||||
}
|
||||
|
||||
public Map<String, String> getMetadata() {return metadata;}
|
||||
@@ -57,13 +62,13 @@ public class MatchingResult {
|
||||
return headers;
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getMatchMap() {
|
||||
public Map<String, String> getMatchMap() {
|
||||
return matchMap;
|
||||
}
|
||||
|
||||
public Duration getTime() {
|
||||
return time;
|
||||
}
|
||||
// public Duration getTime() {
|
||||
// return time;
|
||||
// }
|
||||
|
||||
public String getPlateFilename() {
|
||||
return metadata.get("sample plate filename");
|
||||
@@ -84,13 +89,29 @@ public class MatchingResult {
|
||||
}
|
||||
|
||||
public Integer getAlphaCount() {
|
||||
return Integer.parseInt(metadata.get("total alpha count"));
|
||||
return Integer.parseInt(metadata.get("total alphas read from plate"));
|
||||
}
|
||||
|
||||
public Integer getBetaCount() {
|
||||
return Integer.parseInt(metadata.get("total beta count"));
|
||||
return Integer.parseInt(metadata.get("total betas read from plate"));
|
||||
}
|
||||
|
||||
//put in the rest of these methods following the same pattern
|
||||
public Integer getHighOverlapThreshold() { return Integer.parseInt(metadata.get("high overlap threshold for pairing"));}
|
||||
|
||||
public Integer getLowOverlapThreshold() { return Integer.parseInt(metadata.get("low overlap threshold for pairing"));}
|
||||
|
||||
public Integer getMaxOccupancyDifference() { return Integer.parseInt(metadata.get("maximum occupancy difference for pairing"));}
|
||||
|
||||
public Integer getMinOverlapPercent() { return Integer.parseInt(metadata.get("minimum overlap percent for pairing"));}
|
||||
|
||||
public Double getPairingAttemptRate() { return Double.parseDouble(metadata.get("pairing attempt rate"));}
|
||||
|
||||
public Integer getCorrectPairingCount() { return Integer.parseInt(metadata.get("correct pairing count"));}
|
||||
|
||||
public Integer getIncorrectPairingCount() { return Integer.parseInt(metadata.get("incorrect pairing count"));}
|
||||
|
||||
public Double getPairingErrorRate() { return Double.parseDouble(metadata.get("pairing error rate"));}
|
||||
|
||||
public String getSimulationTime() { return metadata.get("total simulation time (seconds)"); }
|
||||
|
||||
}
|
||||
|
||||
177
src/main/java/MaximumIntegerWeightBipartiteAuctionMatching.java
Normal file
177
src/main/java/MaximumIntegerWeightBipartiteAuctionMatching.java
Normal file
@@ -0,0 +1,177 @@
|
||||
import org.jgrapht.Graph;
|
||||
import org.jgrapht.GraphTests;
|
||||
import org.jgrapht.alg.interfaces.MatchingAlgorithm;
|
||||
|
||||
import java.math.BigDecimal;
|
||||
import java.util.*;
|
||||
|
||||
/**
|
||||
* Maximum weight matching in bipartite graphs with strictly integer edge weights, using a forward auction algorithm.
|
||||
* This implementation uses the Gauss-Seidel version of the forward auction algorithm, in which bids are submitted
|
||||
* one at a time. For any weighted bipartite graph with n vertices in the smaller partition, this algorithm will produce
|
||||
* a matching that is within n*epsilon of being optimal. Using an epsilon = 1/(n+1) ensures that this matching differs
|
||||
* from an optimal matching by <1. Thus, for a bipartite graph with strictly integer weights, this algorithm returns
|
||||
* a maximum weight matching.
|
||||
*
|
||||
* See:
|
||||
* "Towards auction algorithms for large dense assignment problems"
|
||||
* Libor Buš and Pavel Tvrdík, Comput Optim Appl (2009) 43:411-436
|
||||
* https://link.springer.com/article/10.1007/s10589-007-9146-5
|
||||
*
|
||||
* See also:
|
||||
* Many books and papers by Dimitri Bertsekas, including chapter 4 of Linear Network Optimization:
|
||||
* https://web.mit.edu/dimitrib/www/LNets_Full_Book.pdf
|
||||
*
|
||||
* @param <V> the graph vertex type
|
||||
* @param <E> the graph edge type
|
||||
*
|
||||
* @author Eugene Fischer
|
||||
*/
|
||||
|
||||
public class MaximumIntegerWeightBipartiteAuctionMatching<V, E> implements MatchingAlgorithm<V, E> {
|
||||
|
||||
private final Graph<V, E> graph;
|
||||
private final Set<V> partition1;
|
||||
private final Set<V> partition2;
|
||||
private final BigDecimal epsilon;
|
||||
private final Set<E> matching;
|
||||
private BigDecimal matchingWeight;
|
||||
|
||||
private boolean swappedPartitions = false;
|
||||
|
||||
public MaximumIntegerWeightBipartiteAuctionMatching(Graph<V, E> graph, Set<V> partition1, Set<V> partition2) {
|
||||
this.graph = GraphTests.requireUndirected(graph);
|
||||
this.partition1 = Objects.requireNonNull(partition1, "Partition 1 cannot be null");
|
||||
this.partition2 = Objects.requireNonNull(partition2, "Partition 2 cannot be null");
|
||||
int n = Math.max(partition1.size(), partition2.size());
|
||||
this.epsilon = BigDecimal.valueOf(1 / ((double) n + 1)); //The minimum price increase of a bid
|
||||
this.matching = new LinkedHashSet<>();
|
||||
this.matchingWeight = BigDecimal.ZERO;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Method coded using MaximumWeightBipartiteMatching.class from JgraphT as a model
|
||||
*/
|
||||
@Override
|
||||
public Matching<V, E> getMatching() {
|
||||
|
||||
/*
|
||||
* Test input instance
|
||||
*/
|
||||
if (!GraphTests.isSimple(graph)) {
|
||||
throw new IllegalArgumentException("Only simple graphs supported");
|
||||
}
|
||||
if (!GraphTests.isBipartitePartition(graph, partition1, partition2)) {
|
||||
throw new IllegalArgumentException("Graph partition is not bipartite");
|
||||
}
|
||||
|
||||
/*
|
||||
If the two partitions are different sizes, the bidders must be the smaller of the two partitions.
|
||||
*/
|
||||
Set<V> items;
|
||||
Set<V> bidders;
|
||||
if (partition2.size() >= partition1.size()) {
|
||||
bidders = partition1;
|
||||
items = partition2;
|
||||
}
|
||||
else {
|
||||
bidders = partition2;
|
||||
items = partition1;
|
||||
swappedPartitions = true;
|
||||
}
|
||||
|
||||
/*
|
||||
Create a map to track the owner of each item, which is initially null,
|
||||
and a map to track the price of each item, which is initially 0. An
|
||||
Initial price of 0 allows for asymmetric assignment (though does mean
|
||||
that this form of the algorithm cannot take advantage of epsilon-scaling).
|
||||
*/
|
||||
Map<V, V> owners = new HashMap<>();
|
||||
Map<V, BigDecimal> prices = new HashMap<>();
|
||||
for(V item: items) {
|
||||
owners.put(item, null);
|
||||
prices.put(item, BigDecimal.ZERO);
|
||||
}
|
||||
|
||||
//Create a queue of bidders that don't currently own an item, which is initially all of them
|
||||
Queue<V> unmatchedBidders = new ArrayDeque<>();
|
||||
for(V bidder: bidders) {
|
||||
unmatchedBidders.offer(bidder);
|
||||
}
|
||||
|
||||
//Run the auction while there are remaining unmatched bidders
|
||||
while (unmatchedBidders.size() > 0) {
|
||||
V bidder = unmatchedBidders.poll();
|
||||
V item = null;
|
||||
BigDecimal bestValue = BigDecimal.valueOf(-1.0);
|
||||
BigDecimal runnerUpValue = BigDecimal.valueOf(-1.0);
|
||||
/*
|
||||
Find the items that offer the best and second-best value for the bidder,
|
||||
then submit a bid equal to the price of the best-valued item plus the marginal value over
|
||||
the second-best-valued item plus epsilon.
|
||||
*/
|
||||
for (E edge: graph.edgesOf(bidder)) {
|
||||
double weight = graph.getEdgeWeight(edge);
|
||||
if(weight == 0.0) {
|
||||
continue;
|
||||
}
|
||||
V tmp = getItem(edge);
|
||||
BigDecimal value = BigDecimal.valueOf(weight).subtract(prices.get(tmp));
|
||||
if (value.compareTo(bestValue) >= 0) {
|
||||
runnerUpValue = bestValue;
|
||||
bestValue = value;
|
||||
item = tmp;
|
||||
}
|
||||
else if (value.compareTo(runnerUpValue) >= 0) {
|
||||
runnerUpValue = value;
|
||||
}
|
||||
}
|
||||
if(bestValue.compareTo(BigDecimal.ZERO) >= 0) {
|
||||
V formerOwner = owners.get(item);
|
||||
BigDecimal price = prices.get(item);
|
||||
BigDecimal bid = price.add(bestValue).subtract(runnerUpValue).add(epsilon);
|
||||
if (formerOwner != null) {
|
||||
unmatchedBidders.offer(formerOwner);
|
||||
}
|
||||
owners.put(item, bidder);
|
||||
prices.put(item, bid);
|
||||
}
|
||||
}
|
||||
//Add all edges between items and their owners to the matching
|
||||
for (V item: owners.keySet()) {
|
||||
if (owners.get(item) != null) {
|
||||
matching.add(graph.getEdge(item, owners.get(item)));
|
||||
}
|
||||
}
|
||||
//Sum the edges of the matching to obtain the matching weight
|
||||
for(E edge: matching) {
|
||||
this.matchingWeight = this.matchingWeight.add(BigDecimal.valueOf(graph.getEdgeWeight(edge)));
|
||||
}
|
||||
|
||||
return new MatchingImpl<>(graph, matching, matchingWeight.doubleValue());
|
||||
}
|
||||
|
||||
private V getItem(E edge) {
|
||||
if (swappedPartitions) {
|
||||
return graph.getEdgeSource(edge);
|
||||
}
|
||||
else {
|
||||
return graph.getEdgeTarget(edge);
|
||||
}
|
||||
}
|
||||
|
||||
// //method for implementing a forward-reverse auction algorithm, not used here
|
||||
// private V getBidder(E edge) {
|
||||
// if (swappedPartitions) {
|
||||
// return graph.getEdgeTarget(edge);
|
||||
// }
|
||||
// else {
|
||||
// return graph.getEdgeSource(edge);
|
||||
// }
|
||||
// }
|
||||
|
||||
public BigDecimal getMatchingWeight() {
|
||||
return matchingWeight;
|
||||
}
|
||||
}
|
||||
1284
src/main/java/MaximumIntegerWeightBipartiteMatching.java
Normal file
1284
src/main/java/MaximumIntegerWeightBipartiteMatching.java
Normal file
File diff suppressed because it is too large
Load Diff
212
src/main/java/MaximumWeightBipartiteLookBackAuctionMatching.java
Normal file
212
src/main/java/MaximumWeightBipartiteLookBackAuctionMatching.java
Normal file
@@ -0,0 +1,212 @@
|
||||
import org.jgrapht.Graph;
|
||||
import org.jgrapht.GraphTests;
|
||||
import org.jgrapht.alg.interfaces.MatchingAlgorithm;
|
||||
import org.jgrapht.alg.util.Pair;
|
||||
|
||||
import java.math.BigDecimal;
|
||||
import java.util.*;
|
||||
|
||||
/*
|
||||
Maximum weight matching in bipartite graphs with strictly integer edge weights, found using the
|
||||
unscaled look-back auction algorithm
|
||||
*/
|
||||
|
||||
public class MaximumWeightBipartiteLookBackAuctionMatching<V, E> implements MatchingAlgorithm<V, E> {
|
||||
|
||||
private final Graph<V, E> graph;
|
||||
private final Set<V> partition1;
|
||||
private final Set<V> partition2;
|
||||
private final BigDecimal delta;
|
||||
private final Set<E> matching;
|
||||
private BigDecimal matchingWeight;
|
||||
private boolean swappedPartitions = false;
|
||||
|
||||
public MaximumWeightBipartiteLookBackAuctionMatching(Graph<V, E> graph, Set<V> partition1, Set<V> partition2) {
|
||||
this.graph = GraphTests.requireUndirected(graph);
|
||||
this.partition1 = Objects.requireNonNull(partition1, "Partition 1 cannot be null");
|
||||
this.partition2 = Objects.requireNonNull(partition2, "Partition 2 cannot be null");
|
||||
int n = Math.max(partition1.size(), partition2.size());
|
||||
this.delta = BigDecimal.valueOf(1 / ((double) n + 1));
|
||||
this.matching = new LinkedHashSet<>();
|
||||
this.matchingWeight = BigDecimal.ZERO;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
Method coded using MaximumWeightBipartiteMatching.class from JgraphT as a model
|
||||
*/
|
||||
@Override
|
||||
public Matching<V, E> getMatching() {
|
||||
|
||||
/*
|
||||
* Test input instance
|
||||
*/
|
||||
if (!GraphTests.isSimple(graph)) {
|
||||
throw new IllegalArgumentException("Only simple graphs supported");
|
||||
}
|
||||
if (!GraphTests.isBipartitePartition(graph, partition1, partition2)) {
|
||||
throw new IllegalArgumentException("Graph partition is not bipartite");
|
||||
}
|
||||
|
||||
/*
|
||||
If the two partitions are different sizes, the bidders must be the smaller of the two partitions.
|
||||
*/
|
||||
Set<V> items;
|
||||
Set<V> bidders;
|
||||
if (partition2.size() >= partition1.size()) {
|
||||
bidders = partition1;
|
||||
items = partition2;
|
||||
}
|
||||
else {
|
||||
bidders = partition2;
|
||||
items = partition1;
|
||||
swappedPartitions = true;
|
||||
}
|
||||
|
||||
/*
|
||||
Create a map to track the owner of each item, which is initially null,
|
||||
and a map to track the price of each item, which is initially 0.
|
||||
*/
|
||||
Map<V, V> owners = new HashMap<>();
|
||||
|
||||
/*
|
||||
Create a map to track the prices of the objects
|
||||
*/
|
||||
Map<V, BigDecimal> prices = new HashMap<>();
|
||||
for(V item: items) {
|
||||
owners.put(item, null);
|
||||
prices.put(item, BigDecimal.ZERO);
|
||||
}
|
||||
|
||||
/*
|
||||
Create a map to track the most valuable object for a bidder
|
||||
*/
|
||||
Map<V, V> mostValuableItems = new HashMap<>();
|
||||
|
||||
/*
|
||||
Create a map to track the second most valuable object for a bidder
|
||||
*/
|
||||
Map<V, V> runnerUpItems = new HashMap<>();
|
||||
|
||||
/*
|
||||
Create a map to track the bidder value thresholds
|
||||
*/
|
||||
Map<V, BigDecimal> valueThresholds = new HashMap<>();
|
||||
|
||||
|
||||
//Initialize queue of all bidders that don't currently own an item
|
||||
Queue<V> unmatchedBidders = new ArrayDeque<>();
|
||||
for(V bidder: bidders) {
|
||||
unmatchedBidders.offer(bidder);
|
||||
valueThresholds.put(bidder, BigDecimal.ZERO);
|
||||
mostValuableItems.put(bidder, null);
|
||||
runnerUpItems.put(bidder, null);
|
||||
}
|
||||
|
||||
while (unmatchedBidders.size() > 0) {
|
||||
V bidder = unmatchedBidders.poll();
|
||||
// BigDecimal valueThreshold = valueThresholds.get(bidder);
|
||||
BigDecimal bestValue = BigDecimal.ZERO;
|
||||
BigDecimal runnerUpValue = BigDecimal.ZERO;
|
||||
boolean reinitialize = true;
|
||||
// if (mostValuableItems.get(bidder) != null && runnerUpItems.get(bidder) != null) {
|
||||
// reinitialize = false;
|
||||
// //get the weight of the edge between the bidder and the best valued item
|
||||
// V bestItem = mostValuableItems.get(bidder);
|
||||
// BigDecimal bestItemWeight = BigDecimal.valueOf(graph.getEdgeWeight(graph.getEdge(bidder, bestItem)));
|
||||
// bestValue = bestItemWeight.subtract(prices.get(bestItem));
|
||||
// V runnerUpItem = runnerUpItems.get(bidder);
|
||||
// BigDecimal runnerUpWeight = BigDecimal.valueOf(graph.getEdgeWeight(graph.getEdge(bidder, runnerUpItem)));
|
||||
// runnerUpValue = runnerUpWeight.subtract(prices.get(runnerUpItem));
|
||||
// //if both values are still above the threshold
|
||||
// if (bestValue.compareTo(valueThreshold) >= 0 && runnerUpValue.compareTo(valueThreshold) >= 0) {
|
||||
// if (bestValue.compareTo(runnerUpValue) < 0) { //if best value is lower than runner up
|
||||
// BigDecimal tmp = bestValue;
|
||||
// bestValue = runnerUpValue;
|
||||
// runnerUpValue = tmp;
|
||||
// mostValuableItems.put(bidder, runnerUpItem);
|
||||
// runnerUpItems.put(bidder, bestItem);
|
||||
// }
|
||||
// BigDecimal newValueThreshold = bestValue.min(runnerUpValue);
|
||||
// valueThresholds.put(bidder, newValueThreshold);
|
||||
// System.out.println("lookback successful");
|
||||
// }
|
||||
// else {
|
||||
// reinitialize = true; //lookback failed
|
||||
// }
|
||||
// }
|
||||
if (reinitialize){
|
||||
bestValue = BigDecimal.ZERO;
|
||||
runnerUpValue = BigDecimal.ZERO;
|
||||
for (E edge: graph.edgesOf(bidder)) {
|
||||
double weight = graph.getEdgeWeight(edge);
|
||||
if (weight == 0.0) {
|
||||
continue;
|
||||
}
|
||||
V tmpItem = getItem(bidder, edge);
|
||||
BigDecimal tmpValue = BigDecimal.valueOf(weight).subtract(prices.get(tmpItem));
|
||||
if (tmpValue.compareTo(bestValue) >= 0) {
|
||||
runnerUpValue = bestValue;
|
||||
bestValue = tmpValue;
|
||||
runnerUpItems.put(bidder, mostValuableItems.get(bidder));
|
||||
mostValuableItems.put(bidder, tmpItem);
|
||||
}
|
||||
else if (tmpValue.compareTo(runnerUpValue) >= 0) {
|
||||
runnerUpValue = tmpValue;
|
||||
runnerUpItems.put(bidder, tmpItem);
|
||||
}
|
||||
}
|
||||
valueThresholds.put(bidder, runnerUpValue);
|
||||
}
|
||||
//Should now have initialized the maps to make look back possible
|
||||
//skip this bidder if the best value is still zero
|
||||
if (BigDecimal.ZERO.equals(bestValue)) {
|
||||
continue;
|
||||
}
|
||||
V mostValuableItem = mostValuableItems.get(bidder);
|
||||
BigDecimal price = prices.get(mostValuableItem);
|
||||
BigDecimal bid = price.add(bestValue).subtract(runnerUpValue).add(this.delta);
|
||||
V formerOwner = owners.get(mostValuableItem);
|
||||
if (formerOwner != null) {
|
||||
unmatchedBidders.offer(formerOwner);
|
||||
}
|
||||
owners.put(mostValuableItem, bidder);
|
||||
prices.put(mostValuableItem, bid);
|
||||
}
|
||||
|
||||
for (V item: owners.keySet()) {
|
||||
if (owners.get(item) != null) {
|
||||
matching.add(graph.getEdge(item, owners.get(item)));
|
||||
}
|
||||
}
|
||||
|
||||
for(E edge: matching) {
|
||||
this.matchingWeight = this.matchingWeight.add(BigDecimal.valueOf(graph.getEdgeWeight(edge)));
|
||||
}
|
||||
|
||||
|
||||
return new MatchingImpl<>(graph, matching, matchingWeight.doubleValue());
|
||||
}
|
||||
|
||||
private V getItem(V bidder, E edge) {
|
||||
if (swappedPartitions) {
|
||||
return graph.getEdgeSource(edge);
|
||||
}
|
||||
else {
|
||||
return graph.getEdgeTarget(edge);
|
||||
}
|
||||
}
|
||||
|
||||
private V getBidder(V item, E edge) {
|
||||
if (swappedPartitions) {
|
||||
return graph.getEdgeTarget(edge);
|
||||
}
|
||||
else {
|
||||
return graph.getEdgeSource(edge);
|
||||
}
|
||||
}
|
||||
|
||||
public BigDecimal getMatchingWeight() {
|
||||
return matchingWeight;
|
||||
}
|
||||
}
|
||||
@@ -2,21 +2,51 @@
|
||||
|
||||
/*
|
||||
TODO: Implement exponential distribution using inversion method - DONE
|
||||
TODO: Implement collisions with real sequences by having the counting function keep a map of all sequences it's read,
|
||||
with values of all misreads. Can then have a spurious/real collision rate, which will have count randomly select a sequence
|
||||
it's already read at least once, and put that into the list of spurious sequences for the given real sequence. Will let me get rid
|
||||
of the distinctMisreadCount map, and use this new map instead. Doing it this way, once a sequence has been misread as another
|
||||
sequence once, it is more likely to be misread that way again, as future read error collisions can also be real sequence collisions
|
||||
Prob A: a read error occurs. Prob B: it's a new error (otherwise it's a repeated error). Prob C: if new error, prob that it's
|
||||
a real sequence collision (otherwise it's a new spurious sequence) - DONE
|
||||
TODO: Implement discrete frequency distributions using Vose's Alias Method
|
||||
*/
|
||||
|
||||
|
||||
|
||||
import org.apache.commons.rng.sampling.distribution.RejectionInversionZipfSampler;
|
||||
import org.apache.commons.rng.simple.JDKRandomWrapper;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
public class Plate {
|
||||
private CellSample cells;
|
||||
private String sourceFile;
|
||||
private List<List<Integer[]>> wells;
|
||||
private String filename;
|
||||
private List<List<String[]>> wells;
|
||||
private final Random rand = BiGpairSEQ.getRand();
|
||||
private int size;
|
||||
private double error;
|
||||
private Integer[] populations;
|
||||
private double stdDev;
|
||||
private double lambda;
|
||||
boolean exponential = false;
|
||||
private double zipfExponent;
|
||||
private DistributionType distributionType;
|
||||
|
||||
public Plate(CellSample cells, String cellFilename, int numWells, Integer[] populations,
|
||||
double dropoutRate, double parameter){
|
||||
this.cells = cells;
|
||||
this.sourceFile = cellFilename;
|
||||
this.size = numWells;
|
||||
this.wells = new ArrayList<>();
|
||||
this.error = dropoutRate;
|
||||
this.populations = populations;
|
||||
this.stdDev = parameter;
|
||||
this.lambda = parameter;
|
||||
this.zipfExponent = parameter;
|
||||
this.distributionType = BiGpairSEQ.getDistributionType();
|
||||
fillWells(cells.getCells());
|
||||
}
|
||||
|
||||
|
||||
public Plate(int size, double error, Integer[] populations) {
|
||||
@@ -26,44 +56,52 @@ public class Plate {
|
||||
wells = new ArrayList<>();
|
||||
}
|
||||
|
||||
public Plate(String sourceFileName, List<List<Integer[]>> wells) {
|
||||
this.sourceFile = sourceFileName;
|
||||
//constructor for returning a Plate from a PlateFileReader
|
||||
public Plate(String filename, List<List<String[]>> wells) {
|
||||
this.filename = filename;
|
||||
this.wells = wells;
|
||||
this.size = wells.size();
|
||||
|
||||
double totalCellCount = 0.0;
|
||||
double totalDropoutCount = 0.0;
|
||||
List<Integer> concentrations = new ArrayList<>();
|
||||
for (List<Integer[]> w: wells) {
|
||||
for (List<String[]> w: wells) {
|
||||
if(!concentrations.contains(w.size())){
|
||||
concentrations.add(w.size());
|
||||
}
|
||||
for (String[] cell: w) {
|
||||
totalCellCount += 1.0;
|
||||
for (String sequence: cell) {
|
||||
if("-1".equals(sequence)) {
|
||||
totalDropoutCount += 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
double totalSequenceCount = totalCellCount * 4;
|
||||
this.error = totalDropoutCount / totalSequenceCount;
|
||||
this.populations = new Integer[concentrations.size()];
|
||||
for (int i = 0; i < this.populations.length; i++) {
|
||||
this.populations[i] = concentrations.get(i);
|
||||
}
|
||||
}
|
||||
|
||||
public void fillWellsExponential(String sourceFileName, List<Integer[]> cells, double lambda){
|
||||
this.lambda = lambda;
|
||||
exponential = true;
|
||||
sourceFile = sourceFileName;
|
||||
private void fillWellsZipf(List<String[]> cells, double exponent) {
|
||||
int numSections = populations.length;
|
||||
int section = 0;
|
||||
double m;
|
||||
int n;
|
||||
RejectionInversionZipfSampler zipfSampler = new RejectionInversionZipfSampler(new JDKRandomWrapper(rand), cells.size(), exponent);
|
||||
while (section < numSections){
|
||||
for (int i = 0; i < (size / numSections); i++) {
|
||||
List<Integer[]> well = new ArrayList<>();
|
||||
List<String[]> well = new ArrayList<>();
|
||||
for (int j = 0; j < populations[section]; j++) {
|
||||
do {
|
||||
//inverse transform sampling: for random number u in [0,1), x = log(1-u) / (-lambda)
|
||||
m = (Math.log10((1 - rand.nextDouble()))/(-lambda)) * Math.sqrt(cells.size());
|
||||
} while (m >= cells.size() || m < 0);
|
||||
n = (int) Math.floor(m);
|
||||
Integer[] cellToAdd = cells.get(n).clone();
|
||||
n = zipfSampler.sample();
|
||||
} while (n >= cells.size() || n < 0);
|
||||
String[] cellToAdd = cells.get(n).clone();
|
||||
for(int k = 0; k < cellToAdd.length; k++){
|
||||
if(Math.abs(rand.nextDouble()) < error){//error applied to each seqeunce
|
||||
cellToAdd[k] = -1;
|
||||
if(Math.abs(rand.nextDouble()) < error){//error applied to each sequence
|
||||
cellToAdd[k] = "-1";
|
||||
}
|
||||
}
|
||||
well.add(cellToAdd);
|
||||
@@ -74,25 +112,24 @@ public class Plate {
|
||||
}
|
||||
}
|
||||
|
||||
public void fillWells(String sourceFileName, List<Integer[]> cells, double stdDev) {
|
||||
this.stdDev = stdDev;
|
||||
sourceFile = sourceFileName;
|
||||
private void fillWellsExponential(List<String[]> cells, double lambda){
|
||||
int numSections = populations.length;
|
||||
int section = 0;
|
||||
double m;
|
||||
int n;
|
||||
while (section < numSections){
|
||||
for (int i = 0; i < (size / numSections); i++) {
|
||||
List<Integer[]> well = new ArrayList<>();
|
||||
List<String[]> well = new ArrayList<>();
|
||||
for (int j = 0; j < populations[section]; j++) {
|
||||
do {
|
||||
m = (rand.nextGaussian() * stdDev) + (cells.size() / 2);
|
||||
//inverse transform sampling: for random number u in [0,1), x = log(1-u) / (-lambda)
|
||||
m = (Math.log10((1 - rand.nextDouble()))/(-lambda)) * Math.sqrt(cells.size());
|
||||
} while (m >= cells.size() || m < 0);
|
||||
n = (int) Math.floor(m);
|
||||
Integer[] cellToAdd = cells.get(n).clone();
|
||||
String[] cellToAdd = cells.get(n).clone();
|
||||
for(int k = 0; k < cellToAdd.length; k++){
|
||||
if(Math.abs(rand.nextDouble()) < error){//error applied to each sequence
|
||||
cellToAdd[k] = -1;
|
||||
if(Math.abs(rand.nextDouble()) <= error){//error applied to each sequence
|
||||
cellToAdd[k] = "-1";
|
||||
}
|
||||
}
|
||||
well.add(cellToAdd);
|
||||
@@ -103,6 +140,52 @@ public class Plate {
|
||||
}
|
||||
}
|
||||
|
||||
private void fillWells( List<String[]> cells, double stdDev) {
|
||||
this.stdDev = stdDev;
|
||||
int numSections = populations.length;
|
||||
int section = 0;
|
||||
double m;
|
||||
int n;
|
||||
while (section < numSections){
|
||||
for (int i = 0; i < (size / numSections); i++) {
|
||||
List<String[]> well = new ArrayList<>();
|
||||
for (int j = 0; j < populations[section]; j++) {
|
||||
do {
|
||||
m = (rand.nextGaussian() * stdDev) + (cells.size() / 2);
|
||||
} while (m >= cells.size() || m < 0);
|
||||
n = (int) Math.floor(m);
|
||||
String[] cellToAdd = cells.get(n).clone();
|
||||
for(int k = 0; k < cellToAdd.length; k++){
|
||||
if(Math.abs(rand.nextDouble()) < error){//error applied to each sequence
|
||||
cellToAdd[k] = "-1";
|
||||
}
|
||||
}
|
||||
well.add(cellToAdd);
|
||||
}
|
||||
wells.add(well);
|
||||
}
|
||||
section++;
|
||||
}
|
||||
}
|
||||
|
||||
private void fillWells(List<String[]> cells){
|
||||
DistributionType type = BiGpairSEQ.getDistributionType();
|
||||
switch (type) {
|
||||
case POISSON, GAUSSIAN -> {
|
||||
fillWells(cells, getStdDev());
|
||||
break;
|
||||
}
|
||||
case EXPONENTIAL -> {
|
||||
fillWellsExponential(cells, getLambda());
|
||||
break;
|
||||
}
|
||||
case ZIPF -> {
|
||||
fillWellsZipf(cells, getZipfExponent());
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public Integer[] getPopulations(){
|
||||
return populations;
|
||||
}
|
||||
@@ -115,48 +198,122 @@ public class Plate {
|
||||
return stdDev;
|
||||
}
|
||||
|
||||
public boolean isExponential(){return exponential;}
|
||||
public DistributionType getDistributionType() { return distributionType;}
|
||||
|
||||
public double getLambda(){return lambda;}
|
||||
|
||||
public double getZipfExponent(){return zipfExponent;}
|
||||
|
||||
public double getError() {
|
||||
return error;
|
||||
}
|
||||
|
||||
public List<List<Integer[]>> getWells() {
|
||||
public List<List<String[]>> getWells() {
|
||||
return wells;
|
||||
}
|
||||
|
||||
//returns a map of the counts of the sequence at cell index sIndex, in all wells
|
||||
public Map<Integer, Integer> assayWellsSequenceS(int... sIndices){
|
||||
return this.assayWellsSequenceS(0, size, sIndices);
|
||||
}
|
||||
|
||||
//returns a map of the counts of the sequence at cell index sIndex, in a specific well
|
||||
public Map<Integer, Integer> assayWellsSequenceS(int n, int... sIndices) { return this.assayWellsSequenceS(n, n+1, sIndices);}
|
||||
|
||||
//returns a map of the counts of the sequence at cell index sIndex, in a range of wells
|
||||
public Map<Integer, Integer> assayWellsSequenceS(int start, int end, int... sIndices) {
|
||||
Map<Integer,Integer> assay = new HashMap<>();
|
||||
for(int pIndex: sIndices){
|
||||
for(int i = start; i < end; i++){
|
||||
countSequences(assay, wells.get(i), pIndex);
|
||||
}
|
||||
}
|
||||
return assay;
|
||||
}
|
||||
//For the sequences at cell indices sIndices, counts number of unique sequences in the given well into the given map
|
||||
private void countSequences(Map<Integer, Integer> wellMap, List<Integer[]> well, int... sIndices) {
|
||||
for(Integer[] cell : well) {
|
||||
for(int sIndex: sIndices){
|
||||
if(cell[sIndex] != -1){
|
||||
wellMap.merge(cell[sIndex], 1, (oldValue, newValue) -> oldValue + newValue);
|
||||
//For the sequences at cell indices sIndices, counts number of unique sequences in all wells.
|
||||
//Also simulates sequence read errors with given probabilities.
|
||||
//Returns a map of SequenceRecords containing plate data for all sequences read.
|
||||
//TODO actually implement usage of misreadSequences - DONE
|
||||
public Map<String, SequenceRecord> countSequences(Integer readDepth, Double readErrorRate,
|
||||
Double errorCollisionRate, Double realSequenceCollisionRate, int... sIndices) {
|
||||
SequenceType[] sequenceTypes = EnumSet.allOf(SequenceType.class).toArray(new SequenceType[0]);
|
||||
//Map of all real sequences read. Keys are sequences, values are ways sequence has been misread.
|
||||
Map<String, List<String>> sequencesAndMisreads = new HashMap<>();
|
||||
//Map of all sequences read. Keys are sequences, values are associated SequenceRecords
|
||||
Map<String, SequenceRecord> sequenceMap = new LinkedHashMap<>();
|
||||
//get list of all distinct, real sequences
|
||||
String[] realSequences = assayWells(sIndices).toArray(new String[0]);
|
||||
for (int well = 0; well < size; well++) {
|
||||
for (String[] cell: wells.get(well)) {
|
||||
for (int sIndex: sIndices) {
|
||||
//the sequence being read
|
||||
String currentSequence = cell[sIndex];
|
||||
//skip dropout sequences, which have value -1
|
||||
if (!"-1".equals(currentSequence)) {
|
||||
//keep rereading the sequence until the read depth is reached
|
||||
for (int j = 0; j < readDepth; j++) {
|
||||
//The sequence is misread
|
||||
if (rand.nextDouble() < readErrorRate) {
|
||||
//The sequence hasn't been read or misread before
|
||||
if (!sequencesAndMisreads.containsKey(currentSequence)) {
|
||||
sequencesAndMisreads.put(currentSequence, new ArrayList<>());
|
||||
}
|
||||
//The specific misread hasn't happened before
|
||||
if (rand.nextDouble() >= errorCollisionRate || sequencesAndMisreads.get(currentSequence).isEmpty()) {
|
||||
//The misread doesn't collide with a real sequence already on the plate and some sequences have already been read
|
||||
if(rand.nextDouble() >= realSequenceCollisionRate || !sequenceMap.isEmpty()){
|
||||
StringBuilder spurious = new StringBuilder(currentSequence);
|
||||
for (int k = 0; k <= sequencesAndMisreads.get(currentSequence).size(); k++) {
|
||||
spurious.append("*");
|
||||
}
|
||||
//New sequence record for the spurious sequence
|
||||
SequenceRecord tmp = new SequenceRecord(spurious.toString(), sequenceTypes[sIndex]);
|
||||
tmp.addRead(well);
|
||||
sequenceMap.put(spurious.toString(), tmp);
|
||||
//add spurious sequence to list of misreads for the real sequence
|
||||
sequencesAndMisreads.get(currentSequence).add(spurious.toString());
|
||||
}
|
||||
//The misread collides with a real sequence already read from plate
|
||||
else {
|
||||
String wrongSequence;
|
||||
do{
|
||||
//get a random real sequence that's been read from the plate before
|
||||
int index = rand.nextInt(realSequences.length);
|
||||
wrongSequence = realSequences[index];
|
||||
//make sure it's not accidentally the *right* sequence
|
||||
//Also that it's not a wrong sequence already in the misread list
|
||||
} while(currentSequence.equals(wrongSequence) || sequencesAndMisreads.get(currentSequence).contains(wrongSequence));
|
||||
//update the SequenceRecord for wrongSequence
|
||||
sequenceMap.get(wrongSequence).addRead(well);
|
||||
//add wrongSequence to the misreads for currentSequence
|
||||
sequencesAndMisreads.get(currentSequence).add(wrongSequence);
|
||||
}
|
||||
}
|
||||
}
|
||||
//The sequence is read correctly
|
||||
else {
|
||||
//the sequence hasn't been read before
|
||||
if (!sequenceMap.containsKey(currentSequence)) {
|
||||
//create new record for the sequence
|
||||
SequenceRecord tmp = new SequenceRecord(currentSequence, sequenceTypes[sIndex]);
|
||||
//add this read to the sequence record
|
||||
tmp.addRead(well);
|
||||
//add the sequence and its record to the sequence map
|
||||
sequenceMap.put(currentSequence, tmp);
|
||||
//add the sequence to the sequences and misreads map
|
||||
sequencesAndMisreads.put(currentSequence, new ArrayList<>());
|
||||
}
|
||||
//the sequence has been read before
|
||||
else {
|
||||
//get the sequence's record and add this read to it
|
||||
sequenceMap.get(currentSequence).addRead(well);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return sequenceMap;
|
||||
}
|
||||
|
||||
private HashSet<String> assayWells(int[] indices) {
|
||||
HashSet<String> allSequences = new HashSet<>();
|
||||
for (List<String[]> well: wells) {
|
||||
for (String[] cell: well) {
|
||||
for(int index: indices) {
|
||||
allSequences.add(cell[index]);
|
||||
}
|
||||
}
|
||||
}
|
||||
return allSequences;
|
||||
}
|
||||
|
||||
public String getSourceFileName() {
|
||||
return sourceFile;
|
||||
}
|
||||
|
||||
public String getFilename() { return filename; }
|
||||
}
|
||||
|
||||
@@ -13,7 +13,7 @@ import java.util.regex.Pattern;
|
||||
|
||||
public class PlateFileReader {
|
||||
|
||||
private List<List<Integer[]>> wells = new ArrayList<>();
|
||||
private List<List<String[]>> wells = new ArrayList<>();
|
||||
private String filename;
|
||||
|
||||
public PlateFileReader(String filename){
|
||||
@@ -32,17 +32,17 @@ public class PlateFileReader {
|
||||
CSVParser parser = new CSVParser(reader, plateFileFormat);
|
||||
){
|
||||
for(CSVRecord record: parser.getRecords()) {
|
||||
List<Integer[]> well = new ArrayList<>();
|
||||
List<String[]> well = new ArrayList<>();
|
||||
for(String s: record) {
|
||||
if(!"".equals(s)) {
|
||||
String[] intString = s.replaceAll("\\[", "")
|
||||
String[] sequences = s.replaceAll("\\[", "")
|
||||
.replaceAll("]", "")
|
||||
.replaceAll(" ", "")
|
||||
.split(",");
|
||||
//System.out.println(intString);
|
||||
Integer[] arr = new Integer[intString.length];
|
||||
for (int i = 0; i < intString.length; i++) {
|
||||
arr[i] = Integer.valueOf(intString[i]);
|
||||
//System.out.println(sequences);
|
||||
String[] arr = new String[sequences.length];
|
||||
for (int i = 0; i < sequences.length; i++) {
|
||||
arr[i] = sequences[i];
|
||||
}
|
||||
well.add(arr);
|
||||
}
|
||||
@@ -56,11 +56,8 @@ public class PlateFileReader {
|
||||
|
||||
}
|
||||
|
||||
public List<List<Integer[]>> getWells() {
|
||||
return wells;
|
||||
public Plate getSamplePlate() {
|
||||
return new Plate(filename, wells);
|
||||
}
|
||||
|
||||
public String getFilename() {
|
||||
return filename;
|
||||
}
|
||||
}
|
||||
@@ -10,14 +10,16 @@ import java.util.*;
|
||||
|
||||
public class PlateFileWriter {
|
||||
private int size;
|
||||
private List<List<Integer[]>> wells;
|
||||
private List<List<String[]>> wells;
|
||||
private double stdDev;
|
||||
private double lambda;
|
||||
private double zipfExponent;
|
||||
private DistributionType distributionType;
|
||||
private Double error;
|
||||
private String filename;
|
||||
private String sourceFileName;
|
||||
private Integer[] populations;
|
||||
private boolean isExponential = false;
|
||||
|
||||
|
||||
public PlateFileWriter(String filename, Plate plate) {
|
||||
if(!filename.matches(".*\\.csv")){
|
||||
@@ -26,12 +28,17 @@ public class PlateFileWriter {
|
||||
this.filename = filename;
|
||||
this.sourceFileName = plate.getSourceFileName();
|
||||
this.size = plate.getSize();
|
||||
this.isExponential = plate.isExponential();
|
||||
if(isExponential) {
|
||||
this.lambda = plate.getLambda();
|
||||
}
|
||||
else{
|
||||
this.stdDev = plate.getStdDev();
|
||||
this.distributionType = plate.getDistributionType();
|
||||
switch(distributionType) {
|
||||
case POISSON, GAUSSIAN -> {
|
||||
this.stdDev = plate.getStdDev();
|
||||
}
|
||||
case EXPONENTIAL -> {
|
||||
this.lambda = plate.getLambda();
|
||||
}
|
||||
case ZIPF -> {
|
||||
this.zipfExponent = plate.getZipfExponent();
|
||||
}
|
||||
}
|
||||
this.error = plate.getError();
|
||||
this.wells = plate.getWells();
|
||||
@@ -40,13 +47,13 @@ public class PlateFileWriter {
|
||||
}
|
||||
|
||||
public void writePlateFile(){
|
||||
Comparator<List<Integer[]>> listLengthDescending = Comparator.comparingInt(List::size);
|
||||
Comparator<List<String[]>> listLengthDescending = Comparator.comparingInt(List::size);
|
||||
wells.sort(listLengthDescending.reversed());
|
||||
int maxLength = wells.get(0).size();
|
||||
List<List<String>> wellsAsStrings = new ArrayList<>();
|
||||
for (List<Integer[]> w: wells){
|
||||
for (List<String[]> w: wells){
|
||||
List<String> tmp = new ArrayList<>();
|
||||
for(Integer[] c: w) {
|
||||
for(String[] c: w) {
|
||||
tmp.add(Arrays.toString(c));
|
||||
}
|
||||
wellsAsStrings.add(tmp);
|
||||
@@ -93,13 +100,24 @@ public class PlateFileWriter {
|
||||
printer.printComment("Cell source file name: " + sourceFileName);
|
||||
printer.printComment("Each row represents one well on the plate.");
|
||||
printer.printComment("Plate size: " + size);
|
||||
printer.printComment("Error rate: " + error);
|
||||
printer.printComment("Well populations: " + wellPopulationsString);
|
||||
if(isExponential){
|
||||
printer.printComment("Lambda: " + lambda);
|
||||
}
|
||||
else {
|
||||
printer.printComment("Std. dev.: " + stdDev);
|
||||
printer.printComment("Error rate: " + error);
|
||||
switch (distributionType) {
|
||||
case POISSON -> {
|
||||
printer.printComment("Cell frequency distribution: POISSON");
|
||||
}
|
||||
case GAUSSIAN -> {
|
||||
printer.printComment("Cell frequency distribution: GAUSSIAN");
|
||||
printer.printComment("--Standard deviation: " + stdDev);
|
||||
}
|
||||
case EXPONENTIAL -> {
|
||||
printer.printComment("Cell frequency distribution: EXPONENTIAL");
|
||||
printer.printComment("--Lambda: " + lambda);
|
||||
}
|
||||
case ZIPF -> {
|
||||
printer.printComment("Cell frequency distribution: ZIPF");
|
||||
printer.printComment("--Exponent: " + zipfExponent);
|
||||
}
|
||||
}
|
||||
printer.printRecords(wellsAsStrings);
|
||||
} catch(IOException ex){
|
||||
|
||||
70
src/main/java/SequenceRecord.java
Normal file
70
src/main/java/SequenceRecord.java
Normal file
@@ -0,0 +1,70 @@
|
||||
/*
|
||||
Class to represent individual sequences, holding their well occupancy and read count information.
|
||||
Will make a map of these keyed to the sequences themselves.
|
||||
Ideally, I'll be able to construct both the Vertices and the weights matrix from this map.
|
||||
|
||||
*/
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.*;
|
||||
|
||||
public class SequenceRecord implements Serializable {
|
||||
private final String sequence;
|
||||
private final SequenceType type;
|
||||
//keys are well numbers, values are read count in that well
|
||||
private final Map<Integer, Integer> wells;
|
||||
|
||||
public SequenceRecord (String sequence, SequenceType type) {
|
||||
this.sequence = sequence;
|
||||
this.type = type;
|
||||
this.wells = new LinkedHashMap<>();
|
||||
}
|
||||
|
||||
//this shouldn't be necessary, since the sequence will be the map key, but
|
||||
public String getSequence() {
|
||||
return sequence;
|
||||
}
|
||||
|
||||
public SequenceType getSequenceType(){
|
||||
return type;
|
||||
}
|
||||
|
||||
//use this to update the record for each new read
|
||||
public void addRead(Integer wellNumber) {
|
||||
wells.merge(wellNumber,1, Integer::sum);
|
||||
}
|
||||
|
||||
//don't know if I'll ever need this
|
||||
public void addWellData(Integer wellNumber, Integer readCount) {
|
||||
wells.put(wellNumber, readCount);
|
||||
}
|
||||
|
||||
//Method to remove a well from the occupancy map.
|
||||
//Useful for cases where one sequence is misread as another sequence that isn't actually present in the well
|
||||
//This can reveal itself as an anomalously low read count in that well.
|
||||
public void deleteWell(Integer wellNumber) { wells.remove(wellNumber); }
|
||||
|
||||
public Set<Integer> getWells() {
|
||||
return wells.keySet();
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getWellOccupancies() { return wells;}
|
||||
|
||||
public boolean isInWell(Integer wellNumber) {
|
||||
return wells.containsKey(wellNumber);
|
||||
}
|
||||
|
||||
public Integer getOccupancy() {
|
||||
return wells.size();
|
||||
}
|
||||
|
||||
//read count for whole plate
|
||||
public Integer getReadCount(){
|
||||
return wells.values().stream().mapToInt(Integer::valueOf).sum();
|
||||
}
|
||||
|
||||
//read count in a specific well
|
||||
public Integer getReadCount(Integer wellNumber) {
|
||||
return wells.get(wellNumber);
|
||||
}
|
||||
}
|
||||
8
src/main/java/SequenceType.java
Normal file
8
src/main/java/SequenceType.java
Normal file
@@ -0,0 +1,8 @@
|
||||
//enum for tagging types of sequences
|
||||
//Listed in order that they appear in a cell array, so ordinal() method will return correct index
|
||||
public enum SequenceType {
|
||||
CDR3_ALPHA,
|
||||
CDR3_BETA,
|
||||
CDR1_ALPHA,
|
||||
CDR1_BETA
|
||||
}
|
||||
@@ -1,9 +1,8 @@
|
||||
import org.jgrapht.Graphs;
|
||||
import org.jgrapht.alg.interfaces.MatchingAlgorithm;
|
||||
import org.jgrapht.alg.matching.MaximumWeightBipartiteMatching;
|
||||
import org.jgrapht.generate.SimpleWeightedBipartiteGraphMatrixGenerator;
|
||||
import org.jgrapht.graph.DefaultWeightedEdge;
|
||||
import org.jgrapht.graph.SimpleWeightedGraph;
|
||||
import org.jheaps.tree.FibonacciHeap;
|
||||
import org.jheaps.tree.PairingHeap;
|
||||
|
||||
import java.math.BigDecimal;
|
||||
@@ -12,108 +11,175 @@ import java.text.NumberFormat;
|
||||
import java.time.Instant;
|
||||
import java.time.Duration;
|
||||
import java.util.*;
|
||||
import java.util.stream.IntStream;
|
||||
|
||||
import static java.lang.Float.*;
|
||||
|
||||
//NOTE: "sequence" in method and variable names refers to a peptide sequence from a simulated T cell
|
||||
public class Simulator implements GraphModificationFunctions {
|
||||
private static final int cdr3AlphaIndex = 0;
|
||||
private static final int cdr3BetaIndex = 1;
|
||||
private static final int cdr1AlphaIndex = 2;
|
||||
private static final int cdr1BetaIndex = 3;
|
||||
|
||||
//Make the graph needed for matching CDR3s
|
||||
public static GraphWithMapData makeGraph(List<Integer[]> distinctCells, Plate samplePlate, boolean verbose) {
|
||||
|
||||
public static GraphWithMapData makeCDR3Graph(CellSample cellSample, Plate samplePlate, int readDepth,
|
||||
double readErrorRate, double errorCollisionRate,
|
||||
double realSequenceCollisionRate, boolean verbose) {
|
||||
//start timing
|
||||
Instant start = Instant.now();
|
||||
int[] alphaIndex = {cdr3AlphaIndex};
|
||||
int[] betaIndex = {cdr3BetaIndex};
|
||||
|
||||
int[] alphaIndices = {SequenceType.CDR3_ALPHA.ordinal()};
|
||||
int[] betaIndices = {SequenceType.CDR3_BETA.ordinal()};
|
||||
List<String[]> distinctCells = cellSample.getCells();
|
||||
int numWells = samplePlate.getSize();
|
||||
|
||||
//Make a hashmap keyed to alphas, values are associated betas.
|
||||
if(verbose){System.out.println("Making cell maps");}
|
||||
//HashMap keyed to Alphas, values Betas
|
||||
Map<Integer, Integer> distCellsMapAlphaKey = makeSequenceToSequenceMap(distinctCells, 0, 1);
|
||||
Map<String, String> distCellsMapAlphaKey = makeSequenceToSequenceMap(distinctCells,
|
||||
SequenceType.CDR3_ALPHA.ordinal(), SequenceType.CDR3_BETA.ordinal());
|
||||
if(verbose){System.out.println("Cell maps made");}
|
||||
|
||||
if(verbose){System.out.println("Making well maps");}
|
||||
Map<Integer, Integer> allAlphas = samplePlate.assayWellsSequenceS(alphaIndex);
|
||||
Map<Integer, Integer> allBetas = samplePlate.assayWellsSequenceS(betaIndex);
|
||||
int alphaCount = allAlphas.size();
|
||||
if(verbose){System.out.println("All alphas count: " + alphaCount);}
|
||||
int betaCount = allBetas.size();
|
||||
if(verbose){System.out.println("All betas count: " + betaCount);}
|
||||
if(verbose){System.out.println("Well maps made");}
|
||||
//Make linkedHashMap keyed to sequences, values are SequenceRecords reflecting plate statistics
|
||||
if(verbose){System.out.println("Making sample plate sequence maps");}
|
||||
Map<String, SequenceRecord> alphaSequences = samplePlate.countSequences(readDepth, readErrorRate,
|
||||
errorCollisionRate, realSequenceCollisionRate, alphaIndices);
|
||||
int alphaCount = alphaSequences.size();
|
||||
if(verbose){System.out.println("Alphas sequences read: " + alphaCount);}
|
||||
Map<String, SequenceRecord> betaSequences = samplePlate.countSequences(readDepth, readErrorRate,
|
||||
errorCollisionRate, realSequenceCollisionRate, betaIndices);
|
||||
int betaCount = betaSequences.size();
|
||||
if(verbose){System.out.println("Betas sequences read: " + betaCount);}
|
||||
if(verbose){System.out.println("Sample plate sequence maps made");}
|
||||
|
||||
//pre-filter saturating sequences and sequences likely to be misreads
|
||||
if(verbose){System.out.println("Removing sequences present in all wells.");}
|
||||
filterByOccupancyThresholds(allAlphas, 1, numWells - 1);
|
||||
filterByOccupancyThresholds(allBetas, 1, numWells - 1);
|
||||
filterByOccupancyThresholds(alphaSequences, 1, numWells - 1);
|
||||
filterByOccupancyThresholds(betaSequences, 1, numWells - 1);
|
||||
if(verbose){System.out.println("Sequences removed");}
|
||||
int pairableAlphaCount = allAlphas.size();
|
||||
if(verbose){System.out.println("Remaining alphas count: " + pairableAlphaCount);}
|
||||
int pairableBetaCount = allBetas.size();
|
||||
if(verbose){System.out.println("Remaining betas count: " + pairableBetaCount);}
|
||||
if(verbose){System.out.println("Remaining alpha sequence count: " + alphaSequences.size());}
|
||||
if(verbose){System.out.println("Remaining beta sequence count: " + betaSequences.size());}
|
||||
if (readDepth > 1) {
|
||||
if(verbose){System.out.println("Removing sequences with disparate occupancies and read counts");}
|
||||
filterByOccupancyAndReadCount(alphaSequences, readDepth);
|
||||
filterByOccupancyAndReadCount(betaSequences, readDepth);
|
||||
if(verbose){System.out.println("Sequences removed");}
|
||||
if(verbose){System.out.println("Remaining alpha sequence count: " + alphaSequences.size());}
|
||||
if(verbose){System.out.println("Remaining beta sequence count: " + betaSequences.size());}
|
||||
}
|
||||
if (realSequenceCollisionRate > 0.0) {
|
||||
if(verbose){System.out.println("Removing wells with anomalous read counts from sequence records");}
|
||||
int alphaWellsRemoved = filterWellsByReadCount(alphaSequences);
|
||||
int betaWellsRemoved = filterWellsByReadCount(betaSequences);
|
||||
if(verbose){System.out.println("Wells with anomalous read counts removed from sequence records");}
|
||||
if(verbose){System.out.println("Total alpha sequence wells removed: " + alphaWellsRemoved);}
|
||||
if(verbose){System.out.println("Total beta sequence wells removed: " + betaWellsRemoved);}
|
||||
}
|
||||
|
||||
if(verbose){System.out.println("Making vertex maps");}
|
||||
//For the SimpleWeightedBipartiteGraphMatrixGenerator, all vertices must have
|
||||
//distinct numbers associated with them. Since I'm using a 2D array, that means
|
||||
//distinct indices between the rows and columns. vertexStartValue lets me track where I switch
|
||||
//from numbering rows to columns, so I can assign unique numbers to every vertex, and then
|
||||
//subtract the vertexStartValue from betas to use their vertex labels as array indices
|
||||
Integer vertexStartValue = 0;
|
||||
//keys are sequential integer vertices, values are alphas
|
||||
Map<Integer, Integer> plateVtoAMap = makeVertexToSequenceMap(allAlphas, vertexStartValue);
|
||||
//new start value for vertex to beta map should be one more than final vertex value in alpha map
|
||||
vertexStartValue += plateVtoAMap.size();
|
||||
//keys are sequential integers vertices, values are betas
|
||||
Map<Integer, Integer> plateVtoBMap = makeVertexToSequenceMap(allBetas, vertexStartValue);
|
||||
//keys are alphas, values are sequential integer vertices from previous map
|
||||
Map<Integer, Integer> plateAtoVMap = invertVertexMap(plateVtoAMap);
|
||||
//keys are betas, values are sequential integer vertices from previous map
|
||||
Map<Integer, Integer> plateBtoVMap = invertVertexMap(plateVtoBMap);
|
||||
if(verbose){System.out.println("Vertex maps made");}
|
||||
/*
|
||||
* The commented out code below works beautifully for small enough graphs. However, after implementing a
|
||||
* Zipf distribution and attempting to simulate Experiment 3 from the paper again, I discovered that
|
||||
* this method uses too much memory. Even a 120GB heap is not enough to build this adjacency matrix.
|
||||
* So I'm going to attempt to build this graph directly and see if that is less memory intensive
|
||||
*/
|
||||
// //construct the graph. For simplicity, going to make
|
||||
// if(verbose){System.out.println("Making vertex maps");}
|
||||
// //For the SimpleWeightedBipartiteGraphMatrixGenerator, all vertices must have
|
||||
// //distinct numbers associated with them. Since I'm using a 2D array, that means
|
||||
// //distinct indices between the rows and columns. vertexStartValue lets me track where I switch
|
||||
// //from numbering rows to columns, so I can assign unique numbers to every vertex, and then
|
||||
// //subtract the vertexStartValue from betas to use their vertex labels as array indices
|
||||
// int vertexStartValue = 0;
|
||||
// //keys are sequential integer vertices, values are alphas
|
||||
// Map<String, Integer> plateAtoVMap = makeSequenceToVertexMap(alphaSequences, vertexStartValue);
|
||||
// //new start value for vertex to beta map should be one more than final vertex value in alpha map
|
||||
// vertexStartValue += plateAtoVMap.size();
|
||||
// //keys are betas, values are sequential integers
|
||||
// Map<String, Integer> plateBtoVMap = makeSequenceToVertexMap(betaSequences, vertexStartValue);
|
||||
// if(verbose){System.out.println("Vertex maps made");}
|
||||
// //make adjacency matrix for bipartite graph generator
|
||||
// //(technically this is only 1/4 of an adjacency matrix, but that's all you need
|
||||
// //for a bipartite graph, and all the SimpleWeightedBipartiteGraphMatrixGenerator class expects.)
|
||||
// if(verbose){System.out.println("Making adjacency matrix");}
|
||||
// double[][] weights = new double[plateAtoVMap.size()][plateBtoVMap.size()];
|
||||
// fillAdjacencyMatrix(weights, vertexStartValue, alphaSequences, betaSequences, plateAtoVMap, plateBtoVMap);
|
||||
// if(verbose){System.out.println("Adjacency matrix made");}
|
||||
// //make bipartite graph
|
||||
// if(verbose){System.out.println("Making bipartite weighted graph");}
|
||||
// //the graph object
|
||||
// SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph =
|
||||
// new SimpleWeightedGraph<>(DefaultWeightedEdge.class);
|
||||
// //the graph generator
|
||||
// SimpleWeightedBipartiteGraphMatrixGenerator graphGenerator = new SimpleWeightedBipartiteGraphMatrixGenerator();
|
||||
// //the list of alpha vertices
|
||||
// List<Vertex> alphaVertices = new ArrayList<>();
|
||||
// for (String seq : plateAtoVMap.keySet()) {
|
||||
// Vertex alphaVertex = new Vertex(alphaSequences.get(seq), plateAtoVMap.get(seq));
|
||||
// alphaVertices.add(alphaVertex);
|
||||
// }
|
||||
// //Sort to make sure the order of vertices in list matches the order of the adjacency matrix
|
||||
// Collections.sort(alphaVertices);
|
||||
// //Add ordered list of vertices to the graph
|
||||
// graphGenerator.first(alphaVertices);
|
||||
// //the list of beta vertices
|
||||
// List<Vertex> betaVertices = new ArrayList<>();
|
||||
// for (String seq : plateBtoVMap.keySet()) {
|
||||
// Vertex betaVertex = new Vertex(betaSequences.get(seq), plateBtoVMap.get(seq));
|
||||
// betaVertices.add(betaVertex);
|
||||
// }
|
||||
// //Sort to make sure the order of vertices in list matches the order of the adjacency matrix
|
||||
// Collections.sort(betaVertices);
|
||||
// //Add ordered list of vertices to the graph
|
||||
// graphGenerator.second(betaVertices);
|
||||
// //use adjacency matrix of weight created previously
|
||||
// graphGenerator.weights(weights);
|
||||
// graphGenerator.generateGraph(graph);
|
||||
|
||||
//make adjacency matrix for bipartite graph generator
|
||||
//(technically this is only 1/4 of an adjacency matrix, but that's all you need
|
||||
//for a bipartite graph, and all the SimpleWeightedBipartiteGraphMatrixGenerator class expects.)
|
||||
if(verbose){System.out.println("Creating adjacency matrix");}
|
||||
//Count how many wells each alpha appears in
|
||||
Map<Integer, Integer> alphaWellCounts = new HashMap<>();
|
||||
//count how many wells each beta appears in
|
||||
Map<Integer, Integer> betaWellCounts = new HashMap<>();
|
||||
//the adjacency matrix to be used by the graph generator
|
||||
double[][] weights = new double[plateVtoAMap.size()][plateVtoBMap.size()];
|
||||
countSequencesAndFillMatrix(samplePlate, allAlphas, allBetas, plateAtoVMap,
|
||||
plateBtoVMap, alphaIndex, betaIndex, alphaWellCounts, betaWellCounts, weights);
|
||||
if(verbose){System.out.println("Matrix created");}
|
||||
|
||||
//create bipartite graph
|
||||
if(verbose){System.out.println("Creating graph");}
|
||||
//make bipartite graph
|
||||
if(verbose){System.out.println("Making bipartite weighted graph");}
|
||||
//the graph object
|
||||
SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph =
|
||||
SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph =
|
||||
new SimpleWeightedGraph<>(DefaultWeightedEdge.class);
|
||||
//the graph generator
|
||||
SimpleWeightedBipartiteGraphMatrixGenerator graphGenerator = new SimpleWeightedBipartiteGraphMatrixGenerator();
|
||||
//the list of alpha vertices
|
||||
List<Integer> alphaVertices = new ArrayList<>(plateVtoAMap.keySet()); //This will work because LinkedHashMap preserves order of entry
|
||||
graphGenerator.first(alphaVertices);
|
||||
//the list of beta vertices
|
||||
List<Integer> betaVertices = new ArrayList<>(plateVtoBMap.keySet());
|
||||
graphGenerator.second(betaVertices); //This will work because LinkedHashMap preserves order of entry
|
||||
//use adjacency matrix of weight created previously
|
||||
graphGenerator.weights(weights);
|
||||
graphGenerator.generateGraph(graph);
|
||||
int vertexLabelValue = 0;
|
||||
//create and add alpha sequence vertices
|
||||
List<Vertex> alphaVertices = new ArrayList<>();
|
||||
for (Map.Entry<String, SequenceRecord> entry: alphaSequences.entrySet()) {
|
||||
alphaVertices.add(new Vertex(entry.getValue(), vertexLabelValue));
|
||||
vertexLabelValue++;
|
||||
}
|
||||
alphaVertices.forEach(graph::addVertex);
|
||||
//add beta sequence vertices
|
||||
List<Vertex> betaVertices = new ArrayList<>();
|
||||
for (Map.Entry<String, SequenceRecord> entry: betaSequences.entrySet()) {
|
||||
betaVertices.add(new Vertex(entry.getValue(), vertexLabelValue));
|
||||
vertexLabelValue++;
|
||||
}
|
||||
betaVertices.forEach(graph::addVertex);
|
||||
//add edges (best so far)
|
||||
int edgesAddedCount = 0;
|
||||
for(Vertex a: alphaVertices) {
|
||||
Set<Integer> a_wells = a.getRecord().getWells();
|
||||
for(Vertex b: betaVertices) {
|
||||
Set<Integer> sharedWells = new HashSet<>(a_wells);
|
||||
sharedWells.retainAll(b.getRecord().getWells());
|
||||
if (!sharedWells.isEmpty()) {
|
||||
Graphs.addEdge(graph, a, b, (double) sharedWells.size());
|
||||
}
|
||||
edgesAddedCount++;
|
||||
if (edgesAddedCount % 10000000 == 0) { //collect garbage every 10,000,000 edges
|
||||
System.out.println(edgesAddedCount + " edges added");
|
||||
//request garbage collection
|
||||
System.gc();
|
||||
System.out.println("Garbage collection requested");
|
||||
}
|
||||
}
|
||||
}
|
||||
if(verbose){System.out.println("Graph created");}
|
||||
|
||||
//stop timing
|
||||
Instant stop = Instant.now();
|
||||
Duration time = Duration.between(start, stop);
|
||||
|
||||
//create GraphWithMapData object
|
||||
GraphWithMapData output = new GraphWithMapData(graph, numWells, samplePlate.getPopulations(), alphaCount, betaCount,
|
||||
distCellsMapAlphaKey, plateVtoAMap, plateVtoBMap, plateAtoVMap,
|
||||
plateBtoVMap, alphaWellCounts, betaWellCounts, time);
|
||||
//Set source file name in graph to name of sample plate
|
||||
output.setSourceFilename(samplePlate.getSourceFileName());
|
||||
GraphWithMapData output = new GraphWithMapData(graph, numWells, samplePlate.getPopulations(), distCellsMapAlphaKey,
|
||||
alphaCount, betaCount, samplePlate.getError(), readDepth, readErrorRate, errorCollisionRate, realSequenceCollisionRate, time);
|
||||
//Set cell sample file name in graph to name of cell sample
|
||||
output.setCellFilename(cellSample.getFilename());
|
||||
//Set cell sample size in graph
|
||||
output.setCellSampleSize(cellSample.getCellCount());
|
||||
//Set sample plate file name in graph to name of sample plate
|
||||
output.setPlateFilename(samplePlate.getFilename());
|
||||
//return GraphWithMapData object
|
||||
return output;
|
||||
}
|
||||
@@ -121,67 +187,80 @@ public class Simulator implements GraphModificationFunctions {
|
||||
//match CDR3s.
|
||||
public static MatchingResult matchCDR3s(GraphWithMapData data, String dataFilename, Integer lowThreshold,
|
||||
Integer highThreshold, Integer maxOccupancyDifference,
|
||||
Integer minOverlapPercent, boolean verbose) {
|
||||
Integer minOverlapPercent, boolean verbose, boolean calculatePValue) {
|
||||
Instant start = Instant.now();
|
||||
List<Integer[]> removedEdges = new ArrayList<>();
|
||||
SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph = data.getGraph();
|
||||
Map<DefaultWeightedEdge, Vertex[]> removedEdges = new HashMap<>();
|
||||
boolean saveEdges = BiGpairSEQ.cacheGraph();
|
||||
int numWells = data.getNumWells();
|
||||
Integer alphaCount = data.getAlphaCount();
|
||||
Integer betaCount = data.getBetaCount();
|
||||
Map<Integer, Integer> distCellsMapAlphaKey = data.getDistCellsMapAlphaKey();
|
||||
Map<Integer, Integer> plateVtoAMap = data.getPlateVtoAMap();
|
||||
Map<Integer, Integer> plateVtoBMap = data.getPlateVtoBMap();
|
||||
Map<Integer, Integer> alphaWellCounts = data.getAlphaWellCounts();
|
||||
Map<Integer, Integer> betaWellCounts = data.getBetaWellCounts();
|
||||
SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph = data.getGraph();
|
||||
//Integer alphaCount = data.getAlphaCount();
|
||||
//Integer betaCount = data.getBetaCount();
|
||||
Map<String, String> distCellsMapAlphaKey = data.getDistCellsMapAlphaKey();
|
||||
Set<Vertex> alphas = new HashSet<>();
|
||||
Set<Vertex> betas = new HashSet<>();
|
||||
for(Vertex v: graph.vertexSet()) {
|
||||
if (SequenceType.CDR3_ALPHA.equals(v.getType())){
|
||||
alphas.add(v);
|
||||
}
|
||||
else {
|
||||
betas.add(v);
|
||||
}
|
||||
}
|
||||
Integer graphAlphaCount = alphas.size();
|
||||
Integer graphBetaCount = betas.size();
|
||||
Integer graphEdgeCount = graph.edgeSet().size();
|
||||
|
||||
//remove edges with weights outside given overlap thresholds, add those to removed edge list
|
||||
if(verbose){System.out.println("Eliminating edges with weights outside overlap threshold values");}
|
||||
removedEdges.addAll(GraphModificationFunctions.filterByOverlapThresholds(graph, lowThreshold, highThreshold, saveEdges));
|
||||
removedEdges.putAll(GraphModificationFunctions.filterByOverlapThresholds(graph, lowThreshold, highThreshold, saveEdges));
|
||||
if(verbose){System.out.println("Over- and under-weight edges removed");}
|
||||
|
||||
//remove edges between vertices with too small an overlap size, add those to removed edge list
|
||||
if(verbose){System.out.println("Eliminating edges with weights less than " + minOverlapPercent.toString() +
|
||||
" percent of vertex occupancy value.");}
|
||||
removedEdges.addAll(GraphModificationFunctions.filterByOverlapPercent(graph, alphaWellCounts, betaWellCounts,
|
||||
plateVtoAMap, plateVtoBMap, minOverlapPercent, saveEdges));
|
||||
removedEdges.putAll(GraphModificationFunctions.filterByOverlapPercent(graph, minOverlapPercent, saveEdges));
|
||||
if(verbose){System.out.println("Edges with weights too far below a vertex occupancy value removed");}
|
||||
|
||||
//Filter by relative occupancy
|
||||
if(verbose){System.out.println("Eliminating edges between vertices with occupancy difference > "
|
||||
+ maxOccupancyDifference);}
|
||||
removedEdges.addAll(GraphModificationFunctions.filterByRelativeOccupancy(graph, alphaWellCounts, betaWellCounts,
|
||||
plateVtoAMap, plateVtoBMap, maxOccupancyDifference, saveEdges));
|
||||
removedEdges.putAll(GraphModificationFunctions.filterByRelativeOccupancy(graph, maxOccupancyDifference, saveEdges));
|
||||
if(verbose){System.out.println("Edges between vertices of with excessively different occupancy values " +
|
||||
"removed");}
|
||||
|
||||
//Find Maximum Weighted Matching
|
||||
//using jheaps library class PairingHeap for improved efficiency
|
||||
if(verbose){System.out.println("Finding maximum weighted matching");}
|
||||
MaximumWeightBipartiteMatching maxWeightMatching;
|
||||
//Use correct heap type for priority queue
|
||||
String heapType = BiGpairSEQ.getPriorityQueueHeapType();
|
||||
switch (heapType) {
|
||||
case "PAIRING" -> {
|
||||
maxWeightMatching = new MaximumWeightBipartiteMatching(graph,
|
||||
plateVtoAMap.keySet(),
|
||||
plateVtoBMap.keySet(),
|
||||
i -> new PairingHeap(Comparator.naturalOrder()));
|
||||
Integer filteredGraphEdgeCount = graph.edgeSet().size();
|
||||
|
||||
//Find Maximum Weight Matching
|
||||
if(verbose){System.out.println("Finding maximum weight matching");}
|
||||
//The matching object
|
||||
MatchingAlgorithm<Vertex, DefaultWeightedEdge> maxWeightMatching;
|
||||
//Determine algorithm type
|
||||
AlgorithmType algorithm = BiGpairSEQ.getMatchingAlgorithmType();
|
||||
switch (algorithm) { //Only two options now, but I have room to add more algorithms in the future this way
|
||||
case AUCTION -> {
|
||||
//create a new MaximumIntegerWeightBipartiteAuctionMatching
|
||||
maxWeightMatching = new MaximumIntegerWeightBipartiteAuctionMatching<>(graph, alphas, betas);
|
||||
}
|
||||
case "FIBONACCI" -> {
|
||||
maxWeightMatching = new MaximumWeightBipartiteMatching(graph,
|
||||
plateVtoAMap.keySet(),
|
||||
plateVtoBMap.keySet(),
|
||||
i -> new FibonacciHeap(Comparator.naturalOrder()));
|
||||
case INTEGER_WEIGHT_SCALING -> {
|
||||
maxWeightMatching = new MaximumIntegerWeightBipartiteMatching<>(graph, alphas, betas, new BigDecimal(highThreshold));
|
||||
}
|
||||
default -> {
|
||||
maxWeightMatching = new MaximumWeightBipartiteMatching(graph,
|
||||
plateVtoAMap.keySet(),
|
||||
plateVtoBMap.keySet());
|
||||
default -> { //HUNGARIAN
|
||||
//use selected heap type for priority queue
|
||||
HeapType heap = BiGpairSEQ.getPriorityQueueHeapType();
|
||||
if(HeapType.PAIRING.equals(heap)) {
|
||||
maxWeightMatching = new MaximumWeightBipartiteMatching<Vertex, DefaultWeightedEdge>(graph,
|
||||
alphas,
|
||||
betas,
|
||||
i -> new PairingHeap(Comparator.naturalOrder()));
|
||||
}
|
||||
else {//Fibonacci is the default, and what's used in the JGraphT implementation
|
||||
maxWeightMatching = new MaximumWeightBipartiteMatching<Vertex, DefaultWeightedEdge>(graph,
|
||||
alphas,
|
||||
betas);
|
||||
}
|
||||
}
|
||||
}
|
||||
//get the matching
|
||||
MatchingAlgorithm.Matching<String, DefaultWeightedEdge> graphMatching = maxWeightMatching.getMatching();
|
||||
MatchingAlgorithm.Matching<Vertex, DefaultWeightedEdge> matching = maxWeightMatching.getMatching();
|
||||
if(verbose){System.out.println("Matching completed");}
|
||||
Instant stop = Instant.now();
|
||||
|
||||
@@ -193,25 +272,25 @@ public class Simulator implements GraphModificationFunctions {
|
||||
header.add("Beta well count");
|
||||
header.add("Overlap well count");
|
||||
header.add("Matched correctly?");
|
||||
header.add("P-value");
|
||||
if(calculatePValue) { header.add("P-value"); }
|
||||
|
||||
//Results for csv file
|
||||
List<List<String>> allResults = new ArrayList<>();
|
||||
NumberFormat nf = NumberFormat.getInstance(Locale.US);
|
||||
MathContext mc = new MathContext(3);
|
||||
Iterator<DefaultWeightedEdge> weightIter = graphMatching.iterator();
|
||||
Iterator<DefaultWeightedEdge> weightIter = matching.iterator();
|
||||
DefaultWeightedEdge e;
|
||||
int trueCount = 0;
|
||||
int falseCount = 0;
|
||||
boolean check;
|
||||
Map<Integer, Integer> matchMap = new HashMap<>();
|
||||
Map<String, String> matchMap = new HashMap<>();
|
||||
while(weightIter.hasNext()) {
|
||||
e = weightIter.next();
|
||||
Integer source = graph.getEdgeSource(e);
|
||||
Integer target = graph.getEdgeTarget(e);
|
||||
Vertex source = graph.getEdgeSource(e);
|
||||
Vertex target = graph.getEdgeTarget(e);
|
||||
//The match map is all matches found, not just true matches!
|
||||
matchMap.put(plateVtoAMap.get(source), plateVtoBMap.get(target));
|
||||
check = plateVtoBMap.get(target).equals(distCellsMapAlphaKey.get(plateVtoAMap.get(source)));
|
||||
matchMap.put(source.getSequence(), target.getSequence());
|
||||
check = target.getSequence().equals(distCellsMapAlphaKey.get(source.getSequence()));
|
||||
if(check) {
|
||||
trueCount++;
|
||||
}
|
||||
@@ -219,36 +298,54 @@ public class Simulator implements GraphModificationFunctions {
|
||||
falseCount++;
|
||||
}
|
||||
List<String> result = new ArrayList<>();
|
||||
result.add(plateVtoAMap.get(source).toString());
|
||||
//alpha sequence
|
||||
result.add(source.getSequence());
|
||||
//alpha well count
|
||||
result.add(alphaWellCounts.get(plateVtoAMap.get(source)).toString());
|
||||
result.add(plateVtoBMap.get(target).toString());
|
||||
result.add(source.getOccupancy().toString());
|
||||
//beta sequence
|
||||
result.add(target.getSequence());
|
||||
//beta well count
|
||||
result.add(betaWellCounts.get(plateVtoBMap.get(target)).toString());
|
||||
result.add(target.getOccupancy().toString());
|
||||
//overlap count
|
||||
result.add(Double.toString(graph.getEdgeWeight(e)));
|
||||
result.add(Boolean.toString(check));
|
||||
double pValue = Equations.pValue(numWells, alphaWellCounts.get(plateVtoAMap.get(source)),
|
||||
betaWellCounts.get(plateVtoBMap.get(target)), graph.getEdgeWeight(e));
|
||||
BigDecimal pValueTrunc = new BigDecimal(pValue, mc);
|
||||
result.add(pValueTrunc.toString());
|
||||
if (calculatePValue) {
|
||||
double pValue = Equations.pValue(numWells, source.getOccupancy(),
|
||||
target.getOccupancy(), graph.getEdgeWeight(e));
|
||||
BigDecimal pValueTrunc = new BigDecimal(pValue, mc);
|
||||
result.add(pValueTrunc.toString());
|
||||
}
|
||||
allResults.add(result);
|
||||
}
|
||||
|
||||
//Metadata comments for CSV file
|
||||
String algoType = "LEDA book with heap: " + heapType;
|
||||
int min = Math.min(alphaCount, betaCount);
|
||||
String algoType;
|
||||
switch(algorithm) {
|
||||
case AUCTION -> {
|
||||
algoType = "Auction algorithm";
|
||||
}
|
||||
case INTEGER_WEIGHT_SCALING -> {
|
||||
algoType = "Integer weight scaling algorithm from Duan and Su (not yet perfectly implemented)";
|
||||
}
|
||||
default -> { //HUNGARIAN
|
||||
algoType = "Hungarian algorithm with heap: " + BiGpairSEQ.getPriorityQueueHeapType().name();
|
||||
}
|
||||
}
|
||||
|
||||
int min = Math.min(graphAlphaCount, graphBetaCount);
|
||||
//matching weight
|
||||
Double matchingWeight = matching.getWeight();
|
||||
//rate of attempted matching
|
||||
double attemptRate = (double) (trueCount + falseCount) / min;
|
||||
BigDecimal attemptRateTrunc = new BigDecimal(attemptRate, mc);
|
||||
//rate of pairing error
|
||||
double pairingErrorRate = (double) falseCount / (trueCount + falseCount);
|
||||
BigDecimal pairingErrorRateTrunc;
|
||||
if(pairingErrorRate == NaN || pairingErrorRate == POSITIVE_INFINITY || pairingErrorRate == NEGATIVE_INFINITY) {
|
||||
pairingErrorRateTrunc = new BigDecimal(-1, mc);
|
||||
if(Double.isFinite(pairingErrorRate)) {
|
||||
pairingErrorRateTrunc = new BigDecimal(pairingErrorRate, mc);
|
||||
}
|
||||
else{
|
||||
pairingErrorRateTrunc = new BigDecimal(pairingErrorRate, mc);
|
||||
pairingErrorRateTrunc = new BigDecimal(-1, mc);
|
||||
}
|
||||
//get list of well populations
|
||||
Integer[] wellPopulations = data.getWellPopulations();
|
||||
@@ -260,28 +357,47 @@ public class Simulator implements GraphModificationFunctions {
|
||||
populationsStringBuilder.append(wellPopulations[i].toString());
|
||||
}
|
||||
String wellPopulationsString = populationsStringBuilder.toString();
|
||||
//graph generation time
|
||||
Duration graphTime = data.getTime();
|
||||
//MWM run time
|
||||
Duration pairingTime = Duration.between(start, stop);
|
||||
//total simulation time
|
||||
Duration time = Duration.between(start, stop);
|
||||
time = time.plus(data.getTime());
|
||||
Duration totalTime = graphTime.plus(pairingTime);
|
||||
|
||||
|
||||
Map<String, String> metadata = new LinkedHashMap<>();
|
||||
metadata.put("sample plate filename", data.getSourceFilename());
|
||||
metadata.put("cell sample filename", data.getCellFilename());
|
||||
metadata.put("cell sample size", data.getCellSampleSize().toString());
|
||||
metadata.put("sample plate filename", data.getPlateFilename());
|
||||
metadata.put("sample plate well count", data.getNumWells().toString());
|
||||
metadata.put("sequence dropout rate", data.getDropoutRate().toString());
|
||||
metadata.put("graph filename", dataFilename);
|
||||
metadata.put("algorithm type", algoType);
|
||||
metadata.put("MWM algorithm type", algoType);
|
||||
metadata.put("matching weight", matchingWeight.toString());
|
||||
metadata.put("well populations", wellPopulationsString);
|
||||
metadata.put("total alphas found", alphaCount.toString());
|
||||
metadata.put("total betas found", betaCount.toString());
|
||||
metadata.put("high overlap threshold", highThreshold.toString());
|
||||
metadata.put("low overlap threshold", lowThreshold.toString());
|
||||
metadata.put("minimum overlap percent", minOverlapPercent.toString());
|
||||
metadata.put("maximum occupancy difference", maxOccupancyDifference.toString());
|
||||
metadata.put("sequence read depth", data.getReadDepth().toString());
|
||||
metadata.put("sequence read error rate", data.getReadErrorRate().toString());
|
||||
metadata.put("read error collision rate", data.getErrorCollisionRate().toString());
|
||||
metadata.put("real sequence collision rate", data.getRealSequenceCollisionRate().toString());
|
||||
metadata.put("total alphas read from plate", data.getAlphaCount().toString());
|
||||
metadata.put("total betas read from plate", data.getBetaCount().toString());
|
||||
metadata.put("initial edges in graph", graphEdgeCount.toString());
|
||||
metadata.put("alphas in graph (after pre-filtering)", graphAlphaCount.toString());
|
||||
metadata.put("betas in graph (after pre-filtering)", graphBetaCount.toString());
|
||||
metadata.put("final edges in graph (after pre-filtering)", filteredGraphEdgeCount.toString());
|
||||
metadata.put("high overlap threshold for pairing", highThreshold.toString());
|
||||
metadata.put("low overlap threshold for pairing", lowThreshold.toString());
|
||||
metadata.put("minimum overlap percent for pairing", minOverlapPercent.toString());
|
||||
metadata.put("maximum occupancy difference for pairing", maxOccupancyDifference.toString());
|
||||
metadata.put("pairing attempt rate", attemptRateTrunc.toString());
|
||||
metadata.put("correct pairing count", Integer.toString(trueCount));
|
||||
metadata.put("incorrect pairing count", Integer.toString(falseCount));
|
||||
metadata.put("pairing error rate", pairingErrorRateTrunc.toString());
|
||||
metadata.put("simulation time", nf.format(time.toSeconds()));
|
||||
metadata.put("time to generate graph (seconds)", nf.format(graphTime.toSeconds()));
|
||||
metadata.put("time to pair sequences (seconds)",nf.format(pairingTime.toSeconds()));
|
||||
metadata.put("total simulation time (seconds)", nf.format(totalTime.toSeconds()));
|
||||
//create MatchingResult object
|
||||
MatchingResult output = new MatchingResult(metadata, header, allResults, matchMap, time);
|
||||
MatchingResult output = new MatchingResult(metadata, header, allResults, matchMap);
|
||||
if(verbose){
|
||||
for(String s: output.getComments()){
|
||||
System.out.println(s);
|
||||
@@ -297,6 +413,7 @@ public class Simulator implements GraphModificationFunctions {
|
||||
return output;
|
||||
}
|
||||
|
||||
|
||||
//Commented out CDR1 matching until it's time to re-implement it
|
||||
// //Simulated matching of CDR1s to CDR3s. Requires MatchingResult from prior run of matchCDR3s.
|
||||
// public static MatchingResult[] matchCDR1s(List<Integer[]> distinctCells,
|
||||
@@ -603,81 +720,97 @@ public class Simulator implements GraphModificationFunctions {
|
||||
// }
|
||||
|
||||
//Remove sequences based on occupancy
|
||||
public static void filterByOccupancyThresholds(Map<Integer, Integer> wellMap, int low, int high){
|
||||
List<Integer> noise = new ArrayList<>();
|
||||
for(Integer k: wellMap.keySet()){
|
||||
if((wellMap.get(k) > high) || (wellMap.get(k) < low)){
|
||||
private static void filterByOccupancyThresholds(Map<String, SequenceRecord> wellMap, int low, int high){
|
||||
List<String> noise = new ArrayList<>();
|
||||
for(String k: wellMap.keySet()){
|
||||
if((wellMap.get(k).getOccupancy() > high) || (wellMap.get(k).getOccupancy() < low)){
|
||||
noise.add(k);
|
||||
}
|
||||
}
|
||||
for(Integer k: noise) {
|
||||
for(String k: noise) {
|
||||
wellMap.remove(k);
|
||||
}
|
||||
}
|
||||
|
||||
//Counts the well occupancy of the row peptides and column peptides into given maps, and
|
||||
//fills weights in the given 2D array
|
||||
private static void countSequencesAndFillMatrix(Plate samplePlate,
|
||||
Map<Integer,Integer> allRowSequences,
|
||||
Map<Integer,Integer> allColumnSequences,
|
||||
Map<Integer,Integer> rowSequenceToVertexMap,
|
||||
Map<Integer,Integer> columnSequenceToVertexMap,
|
||||
int[] rowSequenceIndices,
|
||||
int[] colSequenceIndices,
|
||||
Map<Integer, Integer> rowSequenceCounts,
|
||||
Map<Integer,Integer> columnSequenceCounts,
|
||||
double[][] weights){
|
||||
Map<Integer, Integer> wellNRowSequences = null;
|
||||
Map<Integer, Integer> wellNColumnSequences = null;
|
||||
int vertexStartValue = rowSequenceToVertexMap.size();
|
||||
int numWells = samplePlate.getSize();
|
||||
for (int n = 0; n < numWells; n++) {
|
||||
wellNRowSequences = samplePlate.assayWellsSequenceS(n, rowSequenceIndices);
|
||||
for (Integer a : wellNRowSequences.keySet()) {
|
||||
if(allRowSequences.containsKey(a)){
|
||||
rowSequenceCounts.merge(a, 1, (oldValue, newValue) -> oldValue + newValue);
|
||||
}
|
||||
private static void filterByOccupancyAndReadCount(Map<String, SequenceRecord> sequences, int readDepth) {
|
||||
List<String> noise = new ArrayList<>();
|
||||
for(String k : sequences.keySet()){
|
||||
//the sequence read count should be more than half the occupancy times read depth if the read error rate is low
|
||||
Integer threshold = (sequences.get(k).getOccupancy() * readDepth) / 2;
|
||||
if(sequences.get(k).getReadCount() < threshold) {
|
||||
noise.add(k);
|
||||
}
|
||||
wellNColumnSequences = samplePlate.assayWellsSequenceS(n, colSequenceIndices);
|
||||
for (Integer b : wellNColumnSequences.keySet()) {
|
||||
if(allColumnSequences.containsKey(b)){
|
||||
columnSequenceCounts.merge(b, 1, (oldValue, newValue) -> oldValue + newValue);
|
||||
}
|
||||
}
|
||||
for (Integer i : wellNRowSequences.keySet()) {
|
||||
if(allRowSequences.containsKey(i)){
|
||||
for (Integer j : wellNColumnSequences.keySet()) {
|
||||
if(allColumnSequences.containsKey(j)){
|
||||
weights[rowSequenceToVertexMap.get(i)][columnSequenceToVertexMap.get(j) - vertexStartValue] += 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
for(String k : noise) {
|
||||
sequences.remove(k);
|
||||
}
|
||||
}
|
||||
|
||||
private static Map<Integer, Integer> makeSequenceToSequenceMap(List<Integer[]> cells, int keySequenceIndex,
|
||||
int valueSequenceIndex){
|
||||
Map<Integer, Integer> keySequenceToValueSequenceMap = new HashMap<>();
|
||||
for (Integer[] cell : cells) {
|
||||
private static int filterWellsByReadCount(Map<String, SequenceRecord> sequences) {
|
||||
int count = 0;
|
||||
for (String k: sequences.keySet()) {
|
||||
//If a sequence has read count R and appears in W wells, then on average its read count in each
|
||||
//well should be R/W. Delete any wells where the read count is less than R/2W.
|
||||
Integer threshold = sequences.get(k).getReadCount() / (2 * sequences.get(k).getOccupancy());
|
||||
List<Integer> noise = new ArrayList<>();
|
||||
for (Integer well: sequences.get(k).getWells()) {
|
||||
if (sequences.get(k).getReadCount(well) < threshold) {
|
||||
noise.add(well);
|
||||
count++;
|
||||
}
|
||||
}
|
||||
for (Integer well: noise) {
|
||||
sequences.get(k).deleteWell(well);
|
||||
}
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
private static Map<String, String> makeSequenceToSequenceMap(List<String[]> cells, int keySequenceIndex,
|
||||
int valueSequenceIndex){
|
||||
Map<String, String> keySequenceToValueSequenceMap = new HashMap<>();
|
||||
for (String[] cell : cells) {
|
||||
keySequenceToValueSequenceMap.put(cell[keySequenceIndex], cell[valueSequenceIndex]);
|
||||
}
|
||||
return keySequenceToValueSequenceMap;
|
||||
}
|
||||
|
||||
private static Map<Integer, Integer> makeVertexToSequenceMap(Map<Integer, Integer> sequences, Integer startValue) {
|
||||
Map<Integer, Integer> map = new LinkedHashMap<>(); //LinkedHashMap to preserve order of entry
|
||||
Integer index = startValue; //is this necessary? I don't think I use this.
|
||||
for (Integer k: sequences.keySet()) {
|
||||
private static Map<Integer, String> makeVertexToSequenceMap(Map<String, SequenceRecord> sequences, Integer startValue) {
|
||||
Map<Integer, String> map = new LinkedHashMap<>(); //LinkedHashMap to preserve order of entry
|
||||
Integer index = startValue;
|
||||
for (String k: sequences.keySet()) {
|
||||
map.put(index, k);
|
||||
index++;
|
||||
}
|
||||
return map;
|
||||
}
|
||||
|
||||
private static Map<Integer, Integer> invertVertexMap(Map<Integer, Integer> map) {
|
||||
Map<Integer, Integer> inverse = new HashMap<>();
|
||||
private static Map<String, Integer> makeSequenceToVertexMap(Map<String, SequenceRecord> sequences, Integer startValue) {
|
||||
Map<String, Integer> map = new LinkedHashMap<>(); //LinkedHashMap to preserve order of entry
|
||||
Integer index = startValue;
|
||||
for (String k: sequences.keySet()) {
|
||||
map.put(k, index);
|
||||
index++;
|
||||
}
|
||||
return map;
|
||||
}
|
||||
|
||||
private static void fillAdjacencyMatrix(double[][] weights, Integer vertexOffsetValue, Map<String, SequenceRecord> rowSequences,
|
||||
Map<String, SequenceRecord> columnSequences, Map<String, Integer> rowToVertexMap,
|
||||
Map<String, Integer> columnToVertexMap) {
|
||||
for (String rowSeq: rowSequences.keySet()) {
|
||||
for (Integer well: rowSequences.get(rowSeq).getWells()) {
|
||||
for (String colSeq: columnSequences.keySet()) {
|
||||
if (columnSequences.get(colSeq).isInWell(well)) {
|
||||
weights[rowToVertexMap.get(rowSeq)][columnToVertexMap.get(colSeq) - vertexOffsetValue] += 1.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private static Map<String, Integer> invertVertexMap(Map<Integer, String> map) {
|
||||
Map<String, Integer> inverse = new HashMap<>();
|
||||
for (Integer k : map.keySet()) {
|
||||
inverse.put(map.get(k), k);
|
||||
}
|
||||
|
||||
@@ -1,23 +1,85 @@
|
||||
import org.jheaps.AddressableHeap;
|
||||
|
||||
import java.io.Serializable;
|
||||
import java.util.Map;
|
||||
|
||||
public class Vertex {
|
||||
private final Integer vertexLabel;
|
||||
private final Integer sequence;
|
||||
private final Integer occupancy;
|
||||
public class Vertex implements Serializable, Comparable<Vertex> {
|
||||
private SequenceRecord record;
|
||||
private Integer vertexLabel;
|
||||
private Double potential;
|
||||
private AddressableHeap queue;
|
||||
|
||||
public Vertex(Integer vertexLabel, Integer sequence, Integer occupancy) {
|
||||
public Vertex(SequenceRecord record, Integer vertexLabel) {
|
||||
this.record = record;
|
||||
this.vertexLabel = vertexLabel;
|
||||
this.sequence = sequence;
|
||||
this.occupancy = occupancy;
|
||||
}
|
||||
|
||||
public Integer getVertexLabel() { return vertexLabel; }
|
||||
public SequenceRecord getRecord() { return record; }
|
||||
|
||||
public Integer getSequence() {
|
||||
return sequence;
|
||||
public SequenceType getType() { return record.getSequenceType(); }
|
||||
|
||||
public Integer getVertexLabel() {
|
||||
return vertexLabel;
|
||||
}
|
||||
|
||||
public String getSequence() {
|
||||
return record.getSequence();
|
||||
}
|
||||
|
||||
public Integer getOccupancy() {
|
||||
return occupancy;
|
||||
return record.getOccupancy();
|
||||
}
|
||||
|
||||
public Integer getReadCount() { return record.getReadCount(); }
|
||||
|
||||
public Integer getReadCount(Integer well) { return record.getReadCount(well); }
|
||||
|
||||
public Map<Integer, Integer> getWellOccupancies() { return record.getWellOccupancies(); }
|
||||
|
||||
@Override //adapted from JGraphT example code
|
||||
public int hashCode()
|
||||
{
|
||||
return (this.getSequence() == null) ? 0 : this.getSequence().hashCode();
|
||||
}
|
||||
|
||||
@Override //adapted from JGraphT example code
|
||||
public boolean equals(Object obj)
|
||||
{
|
||||
if (this == obj)
|
||||
return true;
|
||||
if (obj == null)
|
||||
return false;
|
||||
if (getClass() != obj.getClass())
|
||||
return false;
|
||||
Vertex other = (Vertex) obj;
|
||||
if (this.getSequence() == null) {
|
||||
return other.getSequence() == null;
|
||||
} else {
|
||||
return this.getSequence().equals(other.getSequence());
|
||||
}
|
||||
}
|
||||
|
||||
@Override //adapted from JGraphT example code
|
||||
public String toString()
|
||||
{
|
||||
StringBuilder sb = new StringBuilder();
|
||||
sb.append("(").append(vertexLabel)
|
||||
.append(", Type: ").append(this.getType().name())
|
||||
.append(", Sequence: ").append(this.getSequence())
|
||||
.append(", Occupancy: ").append(this.getOccupancy()).append(")");
|
||||
return sb.toString();
|
||||
}
|
||||
|
||||
@Override
|
||||
public int compareTo(Vertex other) {
|
||||
return this.vertexLabel - other.getVertexLabel();
|
||||
}
|
||||
|
||||
public Double getPotential() {
|
||||
return potential;
|
||||
}
|
||||
|
||||
public void setPotential(Double potential) {
|
||||
this.potential = potential;
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user