102 Commits
v2.0 ... v4.0

Author SHA1 Message Date
eugenefischer
b7c86f20b3 Add read depth attributes to graphml output 2022-09-28 03:01:52 -05:00
eugenefischer
3a47efd361 Update TODO 2022-09-28 03:01:03 -05:00
eugenefischer
58bb04c431 Remove redundant toString() calls 2022-09-28 02:08:17 -05:00
eugenefischer
610da68262 Refactor Vertex class to use SequenceRecords 2022-09-28 00:58:44 -05:00
eugenefischer
9973473cc6 Make serializable and implement getWellOccupancies method 2022-09-28 00:58:02 -05:00
eugenefischer
8781afd74c Reorder conditional 2022-09-28 00:57:06 -05:00
eugenefischer
88b6c79caa Refactor to simplify graph creation code 2022-09-28 00:07:59 -05:00
eugenefischer
35a519d499 update TODO 2022-09-27 22:20:57 -05:00
eugenefischer
5bd1e568a6 update TODO 2022-09-27 15:08:16 -05:00
eugenefischer
4ad1979c18 Add read depth simulation options to CLI 2022-09-27 15:05:50 -05:00
eugenefischer
423c9d5c93 Add read depth simulation options to CLI 2022-09-27 14:35:55 -05:00
eugenefischer
7c3c95ab4b update TODO in readme 2022-09-27 14:11:21 -05:00
eugenefischer
d71a99555c clean up metadata 2022-09-27 12:15:12 -05:00
eugenefischer
2bf2a9f5f7 Add comments 2022-09-27 11:51:51 -05:00
eugenefischer
810abdb705 Add read depth parameters to output metadata 2022-09-27 11:13:12 -05:00
eugenefischer
f7b3c133bf Add filtering based on occupancy/read count discrepancy 2022-09-26 23:39:18 -05:00
eugenefischer
14fcfe1ff3 spacing 2022-09-26 23:38:56 -05:00
eugenefischer
70fec95a00 Bug fix 2022-09-26 23:17:18 -05:00
eugenefischer
077af3b46e Clear plate in memory when simulating read depth 2022-09-26 23:17:10 -05:00
eugenefischer
db99c74810 Rework read depth simulation to allow edge weight calculations to work as expected. (This changes sample plate in memory, so caching the sample plate is incompatible) 2022-09-26 23:03:23 -05:00
eugenefischer
13a1af1f71 placeholder values until CLI is updated to support read depth simulation 2022-09-26 19:43:29 -05:00
eugenefischer
199c81f983 Implement read count for vertices 2022-09-26 19:42:19 -05:00
eugenefischer
19a2a35f07 Refactor plate assay methods to use maps passed as parameters rather than returning maps 2022-09-26 17:00:25 -05:00
eugenefischer
36c628cde5 Add code to simulate read depth 2022-09-26 16:52:56 -05:00
eugenefischer
1ddac63b0a Add exception handling 2022-09-26 14:28:35 -05:00
eugenefischer
e795b4cdd0 Add read depth option to interface 2022-09-26 14:25:47 -05:00
eugenefischer
60cf6775c2 notes toward command line read depth option 2022-09-26 14:25:30 -05:00
eugenefischer
8a8c89c9ba revert options menu 2022-09-26 14:24:58 -05:00
eugenefischer
86371668d5 Add menu option to activate simulation of read depth and sequence read errors 2022-09-26 13:47:19 -05:00
eugenefischer
d81ab25a68 Comment: need to update this when read count is implemented 2022-09-26 13:46:53 -05:00
eugenefischer
02c8e6aacb Refactor sequences to be strings instead of integers, to make simulating read errors easier 2022-09-26 13:37:48 -05:00
eugenefischer
f84dfb2b4b Method stub for simulating read depth 2022-09-26 00:43:13 -05:00
eugenefischer
184278b72e Add fields for simulating read depth. Also a priority queue for lookback auctions 2022-09-26 00:42:55 -05:00
eugenefischer
489369f533 Add flag to simulate read depth 2022-09-26 00:42:23 -05:00
eugenefischer
fbee591273 Change indentation 2022-09-25 22:36:02 -05:00
eugenefischer
603a999b59 Update readme 2022-09-25 22:35:52 -05:00
eugenefischer
c3df4b12ab Update readme with read depth TODO 2022-09-25 21:50:59 -05:00
eugenefischer
d1a56c3578 Hand-merge of some things from Dev_Vertex branch that didn't make it in for some reason 2022-09-25 19:07:25 -05:00
eugenefischer
16daf02dd6 Merge branch 'Dev_Vertex'
# Conflicts:
#	src/main/java/GraphModificationFunctions.java
#	src/main/java/GraphWithMapData.java
#	src/main/java/Simulator.java
#	src/main/java/Vertex.java
2022-09-25 18:33:26 -05:00
eugenefischer
04a077da2e update Readme 2022-09-25 18:24:12 -05:00
eugenefischer
740835f814 fix typo 2022-09-25 17:47:07 -05:00
eugenefischer
8a77d53f1f Output sequence counts before and after pre-filtering (currently pre-filtering only sequences present in all wells) 2022-09-25 17:20:50 -05:00
eugenefischer
58fa140ee5 add comments 2022-09-25 16:10:17 -05:00
eugenefischer
475bbf3107 Sort vertex lists by vertex label before making adjacency matrix 2022-09-25 15:54:28 -05:00
eugenefischer
4f2fa4cbbe Pre-filter saturating sequences only. Retaining singletons seems to improve matching accuracy in high sample rate test (well populations 10% of total cell sample size) 2022-09-25 15:19:56 -05:00
eugenefischer
58d418e44b Pre-filter saturating sequences only. Retaining singletons seems to improve matching accuracy in high sample rate test (well populations 10% of total cell sample size) 2022-09-25 15:06:46 -05:00
eugenefischer
1971a96467 Remove pre-filtering of singleton and saturating sequences 2022-09-25 14:55:43 -05:00
eugenefischer
e699795521 Revert "by-hand merge of needed code from custom vertex branch"
This reverts commit 29b844afd2.
2022-09-25 14:34:31 -05:00
eugenefischer
bd6d010b0b Revert "update TODO"
This reverts commit a054c0c20a.
2022-09-25 14:34:31 -05:00
eugenefischer
61d1eb3eb1 Revert "Reword output message"
This reverts commit 63317f2aa0.
2022-09-25 14:34:31 -05:00
eugenefischer
cb41b45204 Revert "Reword option menu item"
This reverts commit 06e72314b0.
2022-09-25 14:34:31 -05:00
eugenefischer
a84d2e1bfe Revert "Add comment on map data encodng"
This reverts commit 73c83bf35d.
2022-09-25 14:34:31 -05:00
eugenefischer
7b61d2c0d7 Revert "update version number"
This reverts commit e4e5a1f979.
2022-09-25 14:34:31 -05:00
eugenefischer
56454417c0 Revert "Restore pre-filtering of singleton and saturating sequences"
This reverts commit 5c03909a11.
2022-09-25 14:34:31 -05:00
eugenefischer
8ee1c5903e Merge branch 'master' into Dev_Vertex
# Conflicts:
#	src/main/java/GraphMLFileReader.java
#	src/main/java/InteractiveInterface.java
#	src/main/java/Simulator.java
2022-09-25 14:18:56 -05:00
eugenefischer
5c03909a11 Restore pre-filtering of singleton and saturating sequences 2022-09-22 01:39:13 -05:00
eugenefischer
e4e5a1f979 update version number 2022-09-22 00:00:02 -05:00
eugenefischer
73c83bf35d Add comment on map data encodng 2022-09-21 21:46:00 -05:00
eugenefischer
06e72314b0 Reword option menu item 2022-09-21 21:43:47 -05:00
eugenefischer
63317f2aa0 Reword output message 2022-09-21 18:08:52 -05:00
eugenefischer
a054c0c20a update TODO 2022-09-21 16:50:00 -05:00
eugenefischer
29b844afd2 by-hand merge of needed code from custom vertex branch 2022-09-21 16:48:26 -05:00
eugenefischer
dea4972927 remove prefiltering of singletons and saturating sequences 2022-09-21 16:09:08 -05:00
eugenefischer
9ae38bf247 Fix bug in correct match counter 2022-09-21 15:59:23 -05:00
eugenefischer
3ba305abdb Update ToDo 2022-09-21 13:30:30 -05:00
eugenefischer
3707923398 Merge remote-tracking branch 'origin/master' 2022-09-21 13:16:52 -05:00
eugenefischer
cf771ce574 parameterized sequence indices 2022-09-21 13:15:49 -05:00
f980722b56 update TODO 2022-09-21 18:09:37 +00:00
1df86f01df parameterized sequence indices 2022-03-05 12:03:31 -06:00
96ba57d653 Remove singleton sequences from wells in initial filtering 2022-03-04 16:14:17 -06:00
b602fb02f1 Remove obsolete comments 2022-03-02 23:35:24 -06:00
325e1ebe2b Add data on randomized well population behavior 2022-03-02 23:21:56 -06:00
df047267ee Add data on randomized well population behavior 2022-03-02 22:54:17 -06:00
03e8d31210 Add data on randomized well population behavior 2022-03-02 18:55:19 -06:00
582dc3ef40 Update readme 2022-03-02 12:39:40 -06:00
4c872ed48e Add optional stdout print flags 2022-03-01 15:27:04 -06:00
3fc39302c7 Add detail to error message 2022-03-01 15:24:14 -06:00
578bdc0fbf clarify help menu text 2022-03-01 15:08:43 -06:00
8275cf7740 Check for finite pairing error rate 2022-03-01 09:01:53 -06:00
64209691f0 Check for finite pairing error rate 2022-03-01 09:00:58 -06:00
1886800873 update readme 2022-03-01 08:54:32 -06:00
bedf0894bc update readme 2022-03-01 08:45:40 -06:00
2ac3451842 update readme 2022-03-01 08:43:48 -06:00
67ec3f3764 update readme 2022-03-01 08:43:18 -06:00
b5a8b7e2d5 update readme 2022-03-01 08:41:57 -06:00
9fb3095f0f Clarify help text 2022-03-01 08:40:34 -06:00
25acf920c2 Add version information 2022-03-01 08:34:35 -06:00
f301327693 Update readme with -graphml flag 2022-03-01 08:24:43 -06:00
e04d2d6777 Fix typos in help menu 2022-03-01 08:16:06 -06:00
3e41afaa64 bugfix 2022-02-27 19:08:29 -06:00
bc5d67680d Add flag to print metadata to stdout 2022-02-27 17:36:23 -06:00
f2347e8fc2 check verbose flag 2022-02-27 17:35:50 -06:00
c8364d8a6e check verbose flag 2022-02-27 17:34:20 -06:00
817fe51708 Code cleanup 2022-02-26 09:56:46 -06:00
1ea68045ce Refactor cdr3 matching to use new Vertex class 2022-02-26 09:49:16 -06:00
75b2aa9553 testing graph attributes 2022-02-26 08:58:52 -06:00
b3dc10f287 add graph attributes to graphml writer 2022-02-26 08:15:48 -06:00
fb8d8d8785 make heap type an enum 2022-02-26 08:15:31 -06:00
ab437512e9 make Vertex serializable 2022-02-26 07:45:36 -06:00
7b03a3cce8 bugfix 2022-02-26 07:35:34 -06:00
f032d3e852 rewrite GraphML importer/exporter 2022-02-26 07:34:07 -06:00
b604b1d3cd Changing graph to use Vertex class 2022-02-26 06:19:08 -06:00
20 changed files with 1048 additions and 441 deletions

112
readme.md
View File

@@ -20,8 +20,8 @@ The problem of pairing TCRA/TCRB sequences thus reduces to the "assignment probl
matching on a bipartite graph--the subset of vertex-disjoint edges whose weights sum to the maximum possible value.
This is a well-studied combinatorial optimization problem, with many known solutions.
The most efficient algorithm known to the author for maximum weight matching of a bipartite graph with strictly integral weights
is from Duan and Su (2012). For a graph with m edges, n vertices per side, and maximum integer edge weight N,
The most efficient algorithm known to the author for maximum weight matching of a bipartite graph with strictly integral
weights is from Duan and Su (2012). For a graph with m edges, n vertices per side, and maximum integer edge weight N,
their algorithm runs in **O(m sqrt(n) log(N))** time. As the graph representation of a pairSEQ experiment is
bipartite with integer weights, this algorithm is ideal for BiGpairSEQ.
@@ -43,13 +43,13 @@ Run with the command:
`java -jar BiGpairSEQ_Sim.jar`
Processing sample plates with tens of thousands of sequences may require large amounts
of RAM. It is often desirable to increase the JVM maximum heap allocation with the -Xmx flag.
of RAM. It is often desirable to increase the JVM maximum heap allocation with the `-Xmx` flag.
For example, to run the program with 32 gigabytes of memory, use the command:
`java -Xmx32G -jar BiGpairSEQ_Sim.jar`
There are a number of command line options, to allow the program to be used in shell scripts. For a full list,
use the -help flag:
use the `-help` flag:
`java -jar BiGpairSEQ_Sim.jar -help`
@@ -108,7 +108,7 @@ device-specific.)
The program's caching behavior can be controlled in the Options menu. By default, all caching is OFF.
The program can optionally output Graph/Data files in .GraphML format (.graphml) for data portability. This can be
The program can optionally output Graph/Data files in GraphML format (.graphml) for data portability. This can be
turned on in the Options menu. By default, GraphML output is OFF.
---
@@ -200,11 +200,20 @@ then use it for multiple different BiGpairSEQ simulations.
Options for creating a Graph/Data file:
* The Cell Sample file to use
* The Sample Plate file to use. (This must have been generated from the selected Cell Sample file.)
* Whether to simulate sequence read depth. If simulated:
* The read depth (number of times each sequence is read)
* The read error rate (probability a sequence is misread)
* The error collision rate (probability two misreads produce the same spurious sequence)
These files do not have a human-readable structure, and are not portable to other programs.
(For portability to other software, turn on GraphML output in the Options menu. This will produce a .graphml file
for the weighted graph, with vertex attributes sequence, type, and occupancy data.)
*Optional GraphML output*
For portability of graph data to other software, turn on [GraphML](http://graphml.graphdrawing.org/index.html) output
in the Options menu in interactive mode, or use the `-graphml`command line argument. This will produce a .graphml file
for the weighted graph, with vertex attributes for sequence, type, and occupancy data. This graph contains all the data
necessary for the BiGpairSEQ matching algorithm. It does not include the data to measure pairing accuracy; for that,
compare the matching results to the original Cell Sample .csv file.
---
@@ -259,49 +268,116 @@ Example output:
P-values are calculated *after* BiGpairSEQ matching is completed, for purposes of comparison only,
using the (2021 corrected) formula from the original pairSEQ paper. (Howie, et al. 2015)
### PERFORMANCE
Performance details of the example excerpted above:
## PERFORMANCE (old results; need updating to reflect current, improved simulator performance)
On a home computer with a Ryzen 5600X CPU, 64GB of 3200MHz DDR4 RAM (half of which was allocated to the Java Virtual Machine), and a PCIe 3.0 SSD, running Linux Mint 20.3 Edge (5.13 kernel),
the author ran a BiGpairSEQ simulation of a 96-well sample plate with 30,000 T cells/well comprising ~11,800 alphas and betas,
taken from a sample of 4,000,000 distinct cells with an exponential frequency distribution.
taken from a sample of 4,000,000 distinct cells with an exponential frequency distribution (lambda 0.6).
With min/max occupancy threshold of 3 and 94 wells for matching, and no other pre-filtering, BiGpairSEQ identified 5,151
correct pairings and 18 incorrect pairings, for an accuracy of 99.652%.
The simulation time was 14'22". If intermediate results were held in memory, this would be equivalent to the total elapsed time.
The total simulation time was 14'22". If intermediate results were held in memory, this would be equivalent to the total elapsed time.
Since this implementation of BiGpairSEQ writes intermediate results to disk (to improve the efficiency of *repeated* simulations
with different filtering options), the actual elapsed time was greater. File I/O time was not measured, but took
slightly less time than the simulation itself. Real elapsed time from start to finish was under 30 minutes.
As mentioned in the theory section, performance could be improved by implementing a more efficient algorithm for finding
the maximum weight matching.
## BEHAVIOR WITH RANDOMIZED WELL POPULATIONS
A series of BiGpairSEQ simulations were conducted using a cell sample file of 3.5 million unique T cells. From these cells,
10 sample plate files were created. All of these sample plates had 96 wells, used an exponential distribution with a lambda of 0.6, and
had a sequence dropout rate of 10%.
The well populations of the plates were:
* One sample plate with 1000 T cells/well
* One sample plate with 2000 T cells/well
* One sample plate with 3000 T cells/well
* One sample plate with 4000 T cells/well
* One sample plate with 5000 T cells/well
* Five sample plates with each individual well's population randomized, from 1000 to 5000 T cells. (Average population ~3000 T cells/well.)
All BiGpairSEQ simulations were run with a low overlap threshold of 3 and a high overlap threshold of 94.
No optional filters were used, so pairing was attempted for all sequences with overlaps within the threshold values.
Constant well population plate results:
| |1000 Cell/Well Plate|2000 Cell/Well Plate|3000 Cell/Well Plate|4000 Cell/Well Plate|5000 Cell/Well Plate
|---|---|---|---|---|---|
|Total Alphas Found|6407|7330|7936|8278|8553|
|Total Betas Found|6405|7333|7968|8269|8582|
|Pairing Attempt Rate|0.661|0.653|0.600|0.579|0.559|
|Correct Pairing Count|4231|4749|4723|4761|4750|
|Incorrect Pairing Count|3|34|40|26|29|
|Pairing Error Rate|0.000709|0.00711|0.00840|0.00543|0.00607|
|Simulation Time (Seconds)|500|643|700|589|598|
Randomized well population plate results:
| |Random Plate 1 | Random Plate 2|Random Plate 3|Random Plate 4|Random Plate 5|Average|
|---|---|---|---|---|---|---|
Total Alphas Found|7853|7904|7964|7898|7917|7907|
Total Betas Found|7851|7891|7920|7910|7894|7893|
Pairing Attempt Rate|0.607|0.610|0.601|0.605|0.603|0.605|
Correct Pairing Count|4718|4782|4721|4755|4731|4741|
Incorrect Pairing Count|51|35|42|27|29|37|
Pairing Error Rate|0.0107|0.00727|0.00882|0.00565|0.00609|0.00771|
Simulation Time (Seconds)|590|677|730|618|615|646|
The average results for the randomized plates are closest to the constant plate with 3000 T cells/well.
This and several other tests indicate that BiGpairSEQ treats a sample plate with a highly variable number of T cells/well
roughly as though it had a constant well population equal to the plate's average well population.
## TODO
* ~~Try invoking GC at end of workloads to reduce paging to disk~~ DONE
* ~~Hold graph data in memory until another graph is read-in? ABANDONED UNABANDONED~~ DONE
* ~~*No, this won't work, because BiGpairSEQ simulations alter the underlying graph based on filtering constraints. Changes would cascade with multiple experiments.*~~
* Might have figured out a way to do it, by taking edges out and then putting them back into the graph. This may actually be possible.
* It is possible, though the modifications to the graph incur their own performance penalties. Need testing to see which option is best.
* It is possible, though the modifications to the graph incur their own performance penalties. Need testing to see which option is best. It may be computer-specific.
* ~~Test whether pairing heap (currently used) or Fibonacci heap is more efficient for priority queue in current matching algorithm~~ DONE
* ~~in theory Fibonacci heap should be more efficient, but complexity overhead may eliminate theoretical advantage~~
* ~~Add controllable heap-type parameter?~~
* Parameter implemented. Fibonacci heap the current default.
* ~~Implement sample plates with random numbers of T cells per well.~~ DONE
* Possible BiGpairSEQ advantage over pairSEQ: BiGpairSEQ is resilient to variations in well population sizes on a sample plate; pairSEQ is not.
* Possible BiGpairSEQ advantage over pairSEQ: BiGpairSEQ is resilient to variations in well population sizes on a sample plate; pairSEQ is not due to nature of probability calculations.
* preliminary data suggests that BiGpairSEQ behaves roughly as though the whole plate had whatever the *average* well concentration is, but that's still speculative.
* See if there's a reasonable way to reformat Sample Plate files so that wells are columns instead of rows.
* ~~See if there's a reasonable way to reformat Sample Plate files so that wells are columns instead of rows.~~
* ~~Problem is variable number of cells in a well~~
* ~~Apache Commons CSV library writes entries a row at a time~~
* _Got this working, but at the cost of a profoundly strange bug in graph occupancy filtering. Have reverted the repo until I can figure out what caused that. Given how easily Thingiverse transposes CSV matrices in R, might not even be worth fixing.
* Got this working, but at the cost of a profoundly strange bug in graph occupancy filtering. Have reverted the repo until I can figure out what caused that. Given how easily Thingiverse transposes CSV matrices in R, might not even be worth fixing.
* ~~Enable GraphML output in addition to serialized object binaries, for data portability~~ DONE
* ~~Custom vertex type with attribute for sequence occupancy?~~ ABANDONED
* Have a branch where this is implemented, but there's a bug that broke matching. Don't currently have time to fix.
* ~~Have a branch where this is implemented, but there's a bug that broke matching. Don't currently have time to fix.~~
* ~~Re-implement command line arguments, to enable scripting and statistical simulation studies~~ DONE
* ~~Implement custom Vertex class to simplify code and make it easier to implement different MWM algorithms~~ DONE
* Advantage: would eliminate the need to use maps to associate vertices with sequences, which would make the code easier to understand.
* This also seems to be faster when using the same algorithm than the version with lots of maps, which is a nice bonus!
* ~~Implement simulation of read depth, and of read errors. Pre-filter graph for difference in read count to eliminate spurious sequences.~~ DONE
* Pre-filtering based on comparing (read depth) * (occupancy) to (read count) for each sequence works extremely well
* ~~Add read depth simulation options to CLI~~ DONE
* ~~Update graphml output to reflect current Vertex class attributes~~ DONE
* Individual well data from the SequenceRecords could be included, if there's ever a reason for it
* Update matching metadata output options in CLI
* Update performance data in this readme
* Re-implement CDR1 matching method
* Refactor simulator code to collect all needed data in a single scan of the plate
* Currently it scans once for the vertices and then again for the edge weights. This made simulating read depth awkward, and incompatible with caching of plate files.
* This would be a fairly major rewrite of the simulator code, but could make things faster, and would definitely make them cleaner.
* Implement Duan and Su's maximum weight matching algorithm
* Add controllable algorithm-type parameter?
* This would be fun and valuable, but probably take more time than I have for a hobby project.
* Implement an auction algorithm for maximum weight matching
* Implement an algorithm for approximating a maximum weight matching
* Some of these run in linear or near-linear time
* given that the underlying biological samples have many, many sources of error, this would probably be the most useful option in practice. It seems less mathematically elegant, though, and so less fun for me.
* Implement Vose's alias method for arbitrary statistical distributions of cells
* Should probably refactor to use apache commons rng for this
* Use commons JCS for caching
* Parameterize pre-filtering. Currently, sequences present in all wells are filtered out before constructing the graph, which massively reduces graph size. But, ideally, no pre-filtering would be necessary.
## CITATIONS
@@ -314,7 +390,7 @@ slightly less time than the simulation itself. Real elapsed time from start to f
* [JGraphT](https://jgrapht.org) -- Graph theory data structures and algorithms
* [JHeaps](https://www.jheaps.org) -- For pairing heap priority queue used in maximum weight matching algorithm
* [Apache Commons CSV](https://commons.apache.org/proper/commons-csv/) -- For CSV file output
* [Apache Commons CLI](https://commons.apache.org/proper/commons-cli/) -- To enable command line arguments for scripting. (**Awaiting re-implementation**.)
* [Apache Commons CLI](https://commons.apache.org/proper/commons-cli/) -- To enable command line arguments for scripting.
## ACKNOWLEDGEMENTS
BiGpairSEQ was conceived in collaboration with Dr. Alice MacQueen, who brought the original

View File

@@ -13,9 +13,10 @@ public class BiGpairSEQ {
private static boolean cacheCells = false;
private static boolean cachePlate = false;
private static boolean cacheGraph = false;
private static String priorityQueueHeapType = "FIBONACCI";
private static HeapType priorityQueueHeapType = HeapType.FIBONACCI;
private static boolean outputBinary = true;
private static boolean outputGraphML = false;
private static final String version = "version 3.0";
public static void main(String[] args) {
if (args.length == 0) {
@@ -156,15 +157,15 @@ public class BiGpairSEQ {
}
public static String getPriorityQueueHeapType() {
return priorityQueueHeapType;
return priorityQueueHeapType.name();
}
public static void setPairingHeap() {
priorityQueueHeapType = "PAIRING";
priorityQueueHeapType = HeapType.PAIRING;
}
public static void setFibonacciHeap() {
priorityQueueHeapType = "FIBONACCI";
priorityQueueHeapType = HeapType.FIBONACCI;
}
public static boolean outputBinary() {return outputBinary;}
@@ -172,5 +173,5 @@ public class BiGpairSEQ {
public static boolean outputGraphML() {return outputGraphML;}
public static void setOutputGraphML(boolean b) {outputGraphML = b;}
public static String getVersion() { return version; }
}

View File

@@ -12,7 +12,7 @@ import java.util.List;
public class CellFileReader {
private String filename;
private List<Integer[]> distinctCells = new ArrayList<>();
private List<String[]> distinctCells = new ArrayList<>();
private Integer cdr1Freq;
public CellFileReader(String filename) {
@@ -32,11 +32,11 @@ public class CellFileReader {
CSVParser parser = new CSVParser(reader, cellFileFormat);
){
for(CSVRecord record: parser.getRecords()) {
Integer[] cell = new Integer[4];
cell[0] = Integer.valueOf(record.get("Alpha CDR3"));
cell[1] = Integer.valueOf(record.get("Beta CDR3"));
cell[2] = Integer.valueOf(record.get("Alpha CDR1"));
cell[3] = Integer.valueOf(record.get("Beta CDR1"));
String[] cell = new String[4];
cell[0] = record.get("Alpha CDR3");
cell[1] = record.get("Beta CDR3");
cell[2] = record.get("Alpha CDR1");
cell[3] = record.get("Beta CDR1");
distinctCells.add(cell);
}
@@ -47,8 +47,8 @@ public class CellFileReader {
}
//get CDR1 frequency
ArrayList<Integer> cdr1Alphas = new ArrayList<>();
for (Integer[] cell : distinctCells) {
ArrayList<String> cdr1Alphas = new ArrayList<>();
for (String[] cell : distinctCells) {
cdr1Alphas.add(cell[3]);
}
double count = cdr1Alphas.stream().distinct().count();
@@ -62,14 +62,4 @@ public class CellFileReader {
}
public String getFilename() { return filename;}
//Refactor everything that uses this to have access to a Cell Sample and get the cells there instead.
public List<Integer[]> getListOfDistinctCellsDEPRECATED(){
return distinctCells;
}
public Integer getCellCountDEPRECATED() {
//Refactor everything that uses this to have access to a Cell Sample and get the count there instead.
return distinctCells.size();
}
}

View File

@@ -11,7 +11,7 @@ import java.util.List;
public class CellFileWriter {
private String[] headers = {"Alpha CDR3", "Beta CDR3", "Alpha CDR1", "Beta CDR1"};
List<Integer[]> cells;
List<String[]> cells;
String filename;
Integer cdr1Freq;
@@ -35,7 +35,7 @@ public class CellFileWriter {
printer.printComment("Sample contains 1 unique CDR1 for every " + cdr1Freq + "unique CDR3s.");
printer.printRecords(cells);
} catch(IOException ex){
System.out.println("Could not make new file named "+filename);
System.out.println("Could not make new file named " + filename);
System.err.println(ex);
}
}

View File

@@ -5,7 +5,7 @@ import java.util.stream.IntStream;
public class CellSample {
private List<Integer[]> cells;
private List<String[]> cells;
private Integer cdr1Freq;
public CellSample(Integer numDistinctCells, Integer cdr1Freq){
@@ -13,31 +13,39 @@ public class CellSample {
List<Integer> numbersCDR3 = new ArrayList<>();
List<Integer> numbersCDR1 = new ArrayList<>();
Integer numDistCDR3s = 2 * numDistinctCells + 1;
//Assign consecutive integers for each CDR3. This ensures they are all unique.
IntStream.range(1, numDistCDR3s + 1).forEach(i -> numbersCDR3.add(i));
//After all CDR3s are assigned, start assigning consecutive integers to CDR1s
//There will usually be fewer integers in the CDR1 list, which will allow repeats below
IntStream.range(numDistCDR3s + 1, numDistCDR3s + 1 + (numDistCDR3s / cdr1Freq) + 1).forEach(i -> numbersCDR1.add(i));
//randomize the order of the numbers in the lists
Collections.shuffle(numbersCDR3);
Collections.shuffle(numbersCDR1);
//Each cell represented by 4 values
//two CDR3s, and two CDR1s. First two values are CDR3s (alpha, beta), second two are CDR1s (alpha, beta)
List<Integer[]> distinctCells = new ArrayList<>();
List<String[]> distinctCells = new ArrayList<>();
for(int i = 0; i < numbersCDR3.size() - 1; i = i + 2){
Integer tmpCDR3a = numbersCDR3.get(i);
Integer tmpCDR3b = numbersCDR3.get(i+1);
Integer tmpCDR1a = numbersCDR1.get(i % numbersCDR1.size());
Integer tmpCDR1b = numbersCDR1.get((i+1) % numbersCDR1.size());
Integer[] tmp = {tmpCDR3a, tmpCDR3b, tmpCDR1a, tmpCDR1b};
//Go through entire CDR3 list once, make pairs of alphas and betas
String tmpCDR3a = numbersCDR3.get(i).toString();
String tmpCDR3b = numbersCDR3.get(i+1).toString();
//Go through the (likely shorter) CDR1 list as many times as necessary, make pairs of alphas and betas
String tmpCDR1a = numbersCDR1.get(i % numbersCDR1.size()).toString();
String tmpCDR1b = numbersCDR1.get((i+1) % numbersCDR1.size()).toString();
//Make the array representing the cell
String[] tmp = {tmpCDR3a, tmpCDR3b, tmpCDR1a, tmpCDR1b};
//Add the cell to the list of distinct cells
distinctCells.add(tmp);
}
this.cells = distinctCells;
}
public CellSample(List<Integer[]> cells, Integer cdr1Freq){
public CellSample(List<String[]> cells, Integer cdr1Freq){
this.cells = cells;
this.cdr1Freq = cdr1Freq;
}
public List<Integer[]> getCells(){
public List<String[]> getCells(){
return cells;
}

View File

@@ -35,6 +35,10 @@ import java.util.stream.Stream;
* output : name of the output file
* graphml : output a graphml file
* binary : output a serialized binary object file
* IF SIMULATING READ DEPTH, ALL THESE ARE REQUIRED. Absence indicates not simulating read depth
* readdepth: number of reads per sequence
* readerrorprob: probability of reading a sequence incorrectly
* errcollisionprob: probability of two read errors being identical
*
* Match flags:
* graphFile : name of graph and data file to use as input
@@ -62,15 +66,18 @@ public class CommandLineInterface {
if (line.hasOption("help")) {
HelpFormatter formatter = new HelpFormatter();
formatter.printHelp("BiGpairSEQ_Sim", mainOptions);
formatter.printHelp("BiGpairSEQ_Sim.jar", mainOptions);
System.out.println();
formatter.printHelp("BiGpairSEQ_SIM -cells", cellOptions);
formatter.printHelp("BiGpairSEQ_Sim.jar -cells", cellOptions);
System.out.println();
formatter.printHelp("BiGpairSEQ_Sim -plate", plateOptions);
formatter.printHelp("BiGpairSEQ_Sim.jar -plate", plateOptions);
System.out.println();
formatter.printHelp("BiGpairSEQ_Sim -graph", graphOptions);
formatter.printHelp("BiGpairSEQ_Sim.jar -graph", graphOptions);
System.out.println();
formatter.printHelp("BiGpairSEQ_Sim -match", matchOptions);
formatter.printHelp("BiGpairSEQ_Sim.jar -match", matchOptions);
}
else if (line.hasOption("version")) {
System.out.println("BiGpairSEQ_Sim " + BiGpairSEQ.getVersion());
}
else if (line.hasOption("cells")) {
line = parser.parse(cellOptions, Arrays.copyOfRange(args, 1, args.length));
@@ -139,7 +146,20 @@ public class CommandLineInterface {
CellSample cells = getCells(cellFilename);
//get plate
Plate plate = getPlate(plateFilename);
GraphWithMapData graph = Simulator.makeGraph(cells, plate, false);
GraphWithMapData graph;
Integer readDepth = 1;
Double readErrorRate = 0.0;
Double errorCollisionRate = 0.0;
if (line.hasOption("rd")) {
readDepth = Integer.parseInt(line.getOptionValue("rd"));
}
if (line.hasOption("err")) {
readErrorRate = Double.parseDouble(line.getOptionValue("err"));
}
if (line.hasOption("coll")) {
errorCollisionRate = Double.parseDouble(line.getOptionValue("coll"));
}
graph = Simulator.makeCDR3Graph(cells, plate, readDepth, readErrorRate, errorCollisionRate, false);
if (!line.hasOption("no-binary")) { //output binary file unless told not to
GraphDataObjectWriter writer = new GraphDataObjectWriter(outputFilename, graph, false);
writer.writeDataToFile();
@@ -153,17 +173,24 @@ public class CommandLineInterface {
else if (line.hasOption("match")) { //can add a flag for which match type in future, spit this in two
line = parser.parse(matchOptions, Arrays.copyOfRange(args, 1, args.length));
String graphFilename = line.getOptionValue("g");
String outputFilename = line.getOptionValue("o");
String outputFilename;
if(line.hasOption("o")) {
outputFilename = line.getOptionValue("o");
}
else {
outputFilename = null;
}
Integer minThreshold = Integer.parseInt(line.getOptionValue("min"));
Integer maxThreshold = Integer.parseInt(line.getOptionValue("max"));
Integer minOverlapPct;
int minOverlapPct;
if (line.hasOption("minpct")) { //see if this filter is being used
minOverlapPct = Integer.parseInt(line.getOptionValue("minpct"));
}
else {
minOverlapPct = 0;
}
Integer maxOccupancyDiff;
int maxOccupancyDiff;
if (line.hasOption("maxdiff")) { //see if this filter is being used
maxOccupancyDiff = Integer.parseInt(line.getOptionValue("maxdiff"));
}
@@ -173,10 +200,38 @@ public class CommandLineInterface {
GraphWithMapData graph = getGraph(graphFilename);
MatchingResult result = Simulator.matchCDR3s(graph, graphFilename, minThreshold, maxThreshold,
maxOccupancyDiff, minOverlapPct, false);
MatchingFileWriter writer = new MatchingFileWriter(outputFilename, result);
writer.writeResultsToFile();
if(outputFilename != null){
MatchingFileWriter writer = new MatchingFileWriter(outputFilename, result);
writer.writeResultsToFile();
}
//can put a bunch of ifs for outputting various things from the MatchingResult to System.out here
//after I put those flags in the matchOptions
if(line.hasOption("print-metadata")) {
for (String k : result.getMetadata().keySet()) {
System.out.println(k + ": " + result.getMetadata().get(k));
}
}
if(line.hasOption("print-error")) {
System.out.println("pairing error rate: " + result.getPairingErrorRate());
}
if(line.hasOption("print-attempt")) {
System.out.println("pairing attempt rate: " +result.getPairingAttemptRate());
}
if(line.hasOption("print-correct")) {
System.out.println("correct pairings: " + result.getCorrectPairingCount());
}
if(line.hasOption("print-incorrect")) {
System.out.println("incorrect pairings: " + result.getIncorrectPairingCount());
}
if(line.hasOption("print-alphas")) {
System.out.println("total alphas found: " + result.getAlphaCount());
}
if(line.hasOption("print-betas")) {
System.out.println("total betas found: " + result.getBetaCount());
}
if(line.hasOption("print-time")) {
System.out.println("simulation time (seconds): " + result.getSimulationTime());
}
}
}
catch (ParseException exp) {
@@ -216,8 +271,11 @@ public class CommandLineInterface {
.longOpt("match-cdr3")
.desc("Matches CDR3s. Requires a graph/data file.")
.build();
Option printVersion = Option.builder("version")
.desc("Prints the program version number to stdout").build();
OptionGroup mainGroup = new OptionGroup();
mainGroup.addOption(help);
mainGroup.addOption(printVersion);
mainGroup.addOption(makeCells);
mainGroup.addOption(makePlate);
mainGroup.addOption(makeGraph);
@@ -297,7 +355,7 @@ public class CommandLineInterface {
.desc("Randomize well populations on sample plate. Takes two arguments: the minimum possible population and the maximum possible population.")
.hasArgs()
.numberOfArgs(2)
.argName("minimum maximum")
.argName("min> <max")
.build();
Option specificWellPopulations = Option.builder("pop")
.desc("The well populations for each section of the sample plate. There will be as many sections as there are populations given.")
@@ -326,28 +384,49 @@ public class CommandLineInterface {
Options graphOptions = new Options();
Option cellFilename = Option.builder("c")
.longOpt("cell-file")
.desc("Cell sample file to use for checking accuracy")
.desc("Cell sample file to use for checking pairing accuracy")
.hasArg()
.argName("filename")
.required().build();
Option plateFilename = Option.builder("p")
.longOpt("plate-filename")
.desc("Sample plate file (made from given cell sample file) to construct graph from")
.desc("Sample plate file from which to construct graph")
.hasArg()
.argName("filename")
.required().build();
Option outputGraphML = Option.builder("graphml")
.desc("Output GraphML file")
.desc("(Optional) Output GraphML file")
.build();
Option outputSerializedBinary = Option.builder("nb")
.longOpt("no-binary")
.desc("Don't output serialized binary file")
.desc("(Optional) Don't output serialized binary file")
.build();
Option readDepth = Option.builder("rd")
.longOpt("read-depth")
.desc("(Optional) The number of times to read each sequence.")
.hasArg()
.argName("depth")
.build();
Option readErrorProb = Option.builder("err")
.longOpt("read-error-prob")
.desc("(Optional) The probability that a sequence will be misread. (0.0 - 1.0)")
.hasArg()
.argName("prob")
.build();
Option errorCollisionProb = Option.builder("coll")
.longOpt("error-collision-prob")
.desc("(Optional) The probability that two misreads will produce the same spurious sequence. (0.0 - 1.0)")
.hasArg()
.argName("prob")
.build();
graphOptions.addOption(cellFilename);
graphOptions.addOption(plateFilename);
graphOptions.addOption(outputFileOption());
graphOptions.addOption(outputGraphML);
graphOptions.addOption(outputSerializedBinary);
graphOptions.addOption(readDepth);
graphOptions.addOption(readErrorProb);
graphOptions.addOption(errorCollisionProb);
return graphOptions;
}
@@ -379,15 +458,46 @@ public class CommandLineInterface {
.hasArg()
.argName("number")
.build();
matchCDR3options.addOption(graphFilename);
matchCDR3options.addOption(minOccupancyOverlap);
matchCDR3options.addOption(maxOccupancyOverlap);
matchCDR3options.addOption(minOverlapPercent);
matchCDR3options.addOption(maxOccupancyDifference);
matchCDR3options.addOption(outputFileOption());
//options for output to System.out
//Option printPairingErrorRate = Option.builder()
Option outputFile = Option.builder("o") //can't call the method this time, because this one's optional
.longOpt("output-file")
.hasArg()
.argName("filename")
.desc("(Optional) Name of output the output file. If not present, no file will be written.")
.build();
matchCDR3options.addOption(graphFilename)
.addOption(minOccupancyOverlap)
.addOption(maxOccupancyOverlap)
.addOption(minOverlapPercent)
.addOption(maxOccupancyDifference)
.addOption(outputFile);
//options for output to System.out
Option printAlphaCount = Option.builder().longOpt("print-alphas")
.desc("(Optional) Print the number of distinct alpha sequences to stdout.").build();
Option printBetaCount = Option.builder().longOpt("print-betas")
.desc("(Optional) Print the number of distinct beta sequences to stdout.").build();
Option printTime = Option.builder().longOpt("print-time")
.desc("(Optional) Print the total simulation time to stdout.").build();
Option printErrorRate = Option.builder().longOpt("print-error")
.desc("(Optional) Print the pairing error rate to stdout").build();
Option printAttempt = Option.builder().longOpt("print-attempt")
.desc("(Optional) Print the pairing attempt rate to stdout").build();
Option printCorrect = Option.builder().longOpt("print-correct")
.desc("(Optional) Print the number of correct pairs to stdout").build();
Option printIncorrect = Option.builder().longOpt("print-incorrect")
.desc("(Optional) Print the number of incorrect pairs to stdout").build();
Option printMetadata = Option.builder().longOpt("print-metadata")
.desc("(Optional) Print a full summary of the matching results to stdout.").build();
matchCDR3options
.addOption(printErrorRate)
.addOption(printAttempt)
.addOption(printCorrect)
.addOption(printIncorrect)
.addOption(printMetadata)
.addOption(printAlphaCount)
.addOption(printBetaCount)
.addOption(printTime);
return matchCDR3options;
}

View File

@@ -4,7 +4,7 @@ public class GraphDataObjectReader {
private GraphWithMapData data;
private String filename;
private boolean verbose = true;
public GraphDataObjectReader(String filename, boolean verbose) throws IOException {
if(!filename.matches(".*\\.ser")){
@@ -15,10 +15,13 @@ public class GraphDataObjectReader {
BufferedInputStream fileIn = new BufferedInputStream(new FileInputStream(filename));
ObjectInputStream in = new ObjectInputStream(fileIn))
{
System.out.println("Reading graph data from file. This may take some time");
System.out.println("File I/O time is not included in results");
if (verbose) {
System.out.println("Reading graph data from file. This may take some time");
System.out.println("File I/O time is not included in results");
}
data = (GraphWithMapData) in.readObject();
} catch (FileNotFoundException | ClassNotFoundException ex) {
System.out.println("Graph/data file " + filename + " not found.");
ex.printStackTrace();
}
}

View File

@@ -3,8 +3,9 @@ import org.jgrapht.graph.SimpleWeightedGraph;
import org.jgrapht.nio.Attribute;
import org.jgrapht.nio.AttributeType;
import org.jgrapht.nio.DefaultAttribute;
import org.jgrapht.nio.dot.DOTExporter;
import org.jgrapht.nio.graphml.GraphMLExporter;
import org.jgrapht.nio.graphml.GraphMLExporter.AttributeCategory;
import org.w3c.dom.Attr;
import java.io.BufferedWriter;
import java.io.IOException;
@@ -12,14 +13,14 @@ import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.StandardOpenOption;
import java.util.HashMap;
import java.util.LinkedHashMap;
import java.util.Map;
public class GraphMLFileWriter {
String filename;
SimpleWeightedGraph graph;
GraphWithMapData data;
Map<String, Attribute> graphAttributes;
public GraphMLFileWriter(String filename, GraphWithMapData data) {
if(!filename.matches(".*\\.graphml")){
@@ -27,52 +28,67 @@ public class GraphMLFileWriter {
}
this.filename = filename;
this.data = data;
this.graph = data.getGraph();
graphAttributes = createGraphAttributes();
}
// public void writeGraphToFile() {
// try(BufferedWriter writer = Files.newBufferedWriter(Path.of(filename), StandardOpenOption.CREATE_NEW);
// ){
// GraphMLExporter<SimpleWeightedGraph, BufferedWriter> exporter = new GraphMLExporter<>();
// exporter.exportGraph(graph, writer);
// } catch(IOException ex){
// System.out.println("Could not make new file named "+filename);
// System.err.println(ex);
// }
// }
public GraphMLFileWriter(String filename, SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph) {
if(!filename.matches(".*\\.graphml")){
filename = filename + ".graphml";
}
this.filename = filename;
this.graph = graph;
}
private Map<String, Attribute> createGraphAttributes(){
Map<String, Attribute> ga = new HashMap<>();
//Sample plate filename
ga.put("sample plate filename", DefaultAttribute.createAttribute(data.getSourceFilename()));
// Number of wells
ga.put("well count", DefaultAttribute.createAttribute(data.getNumWells().toString()));
//Well populations
Integer[] wellPopulations = data.getWellPopulations();
StringBuilder populationsStringBuilder = new StringBuilder();
populationsStringBuilder.append(wellPopulations[0].toString());
for(int i = 1; i < wellPopulations.length; i++){
populationsStringBuilder.append(", ");
populationsStringBuilder.append(wellPopulations[i].toString());
}
String wellPopulationsString = populationsStringBuilder.toString();
ga.put("well populations", DefaultAttribute.createAttribute(wellPopulationsString));
ga.put("read depth", DefaultAttribute.createAttribute(data.getReadDepth().toString()));
ga.put("read error rate", DefaultAttribute.createAttribute(data.getReadErrorRate().toString()));
ga.put("error collision rate", DefaultAttribute.createAttribute(data.getErrorCollisionRate().toString()));
return ga;
}
public void writeGraphToFile() {
SimpleWeightedGraph graph = data.getGraph();
Map<Integer, Integer> vertexToAlphaMap = data.getPlateVtoAMap();
Map<Integer, Integer> vertexToBetaMap = data.getPlateVtoBMap();
Map<Integer, Integer> alphaOccs = data.getAlphaWellCounts();
Map<Integer, Integer> betaOccs = data.getBetaWellCounts();
try(BufferedWriter writer = Files.newBufferedWriter(Path.of(filename), StandardOpenOption.CREATE_NEW);
){
//create exporter. Let the vertex labels be the unique ids for the vertices
GraphMLExporter<Integer, SimpleWeightedGraph<Vertex, DefaultWeightedEdge>> exporter = new GraphMLExporter<>(v -> v.toString());
GraphMLExporter<Vertex, SimpleWeightedGraph<Vertex, DefaultWeightedEdge>> exporter = new GraphMLExporter<>(v -> v.getVertexLabel().toString());
//set to export weights
exporter.setExportEdgeWeights(true);
//Set graph attributes
exporter.setGraphAttributeProvider( () -> graphAttributes);
//set type, sequence, and occupancy attributes for each vertex
//NEED TO ADD NEW FIELD FOR READ COUNT
exporter.setVertexAttributeProvider( v -> {
Map<String, Attribute> attributes = new HashMap<>();
if(vertexToAlphaMap.containsKey(v)) {
attributes.put("type", DefaultAttribute.createAttribute("CDR3 Alpha"));
attributes.put("sequence", DefaultAttribute.createAttribute(vertexToAlphaMap.get(v)));
attributes.put("occupancy", DefaultAttribute.createAttribute(
alphaOccs.get(vertexToAlphaMap.get(v))));
}
else if(vertexToBetaMap.containsKey(v)) {
attributes.put("type", DefaultAttribute.createAttribute("CDR3 Beta"));
attributes.put("sequence", DefaultAttribute.createAttribute(vertexToBetaMap.get(v)));
attributes.put("occupancy", DefaultAttribute.createAttribute(
betaOccs.get(vertexToBetaMap.get(v))));
}
attributes.put("type", DefaultAttribute.createAttribute(v.getType().name()));
attributes.put("sequence", DefaultAttribute.createAttribute(v.getSequence()));
attributes.put("occupancy", DefaultAttribute.createAttribute(v.getOccupancy()));
attributes.put("read count", DefaultAttribute.createAttribute(v.getReadCount()));
return attributes;
});
//register the attributes
exporter.registerAttribute("type", GraphMLExporter.AttributeCategory.NODE, AttributeType.STRING);
exporter.registerAttribute("sequence", GraphMLExporter.AttributeCategory.NODE, AttributeType.STRING);
exporter.registerAttribute("occupancy", GraphMLExporter.AttributeCategory.NODE, AttributeType.STRING);
for(String s : graphAttributes.keySet()) {
exporter.registerAttribute(s, AttributeCategory.GRAPH, AttributeType.STRING);
}
exporter.registerAttribute("type", AttributeCategory.NODE, AttributeType.STRING);
exporter.registerAttribute("sequence", AttributeCategory.NODE, AttributeType.STRING);
exporter.registerAttribute("occupancy", AttributeCategory.NODE, AttributeType.STRING);
exporter.registerAttribute("read count", AttributeCategory.NODE, AttributeType.STRING);
//export the graph
exporter.exportGraph(graph, writer);
} catch(IOException ex){
@@ -81,4 +97,3 @@ public class GraphMLFileWriter {
}
}
}

View File

@@ -2,23 +2,24 @@ import org.jgrapht.graph.DefaultWeightedEdge;
import org.jgrapht.graph.SimpleWeightedGraph;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public interface GraphModificationFunctions {
//remove over- and under-weight edges
static List<Integer[]> filterByOverlapThresholds(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
//remove over- and under-weight edges, return removed edges
static Map<Vertex[], Integer> filterByOverlapThresholds(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
int low, int high, boolean saveEdges) {
List<Integer[]> removedEdges = new ArrayList<>();
Map<Vertex[], Integer> removedEdges = new HashMap<>();
for (DefaultWeightedEdge e : graph.edgeSet()) {
if ((graph.getEdgeWeight(e) > high) || (graph.getEdgeWeight(e) < low)) {
if(saveEdges) {
Integer source = graph.getEdgeSource(e);
Integer target = graph.getEdgeTarget(e);
Vertex source = graph.getEdgeSource(e);
Vertex target = graph.getEdgeTarget(e);
Integer weight = (int) graph.getEdgeWeight(e);
Integer[] edge = {source, target, weight};
removedEdges.add(edge);
Vertex[] edge = {source, target};
removedEdges.put(edge, weight);
}
else {
graph.setEdgeWeight(e, 0.0);
@@ -26,31 +27,27 @@ public interface GraphModificationFunctions {
}
}
if(saveEdges) {
for (Integer[] edge : removedEdges) {
for (Vertex[] edge : removedEdges.keySet()) {
graph.removeEdge(edge[0], edge[1]);
}
}
return removedEdges;
}
//Remove edges for pairs with large occupancy discrepancy
static List<Integer[]> filterByRelativeOccupancy(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
Map<Integer, Integer> alphaWellCounts,
Map<Integer, Integer> betaWellCounts,
Map<Integer, Integer> plateVtoAMap,
Map<Integer, Integer> plateVtoBMap,
//Remove edges for pairs with large occupancy discrepancy, return removed edges
static Map<Vertex[], Integer> filterByRelativeOccupancy(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
Integer maxOccupancyDifference, boolean saveEdges) {
List<Integer[]> removedEdges = new ArrayList<>();
Map<Vertex[], Integer> removedEdges = new HashMap<>();
for (DefaultWeightedEdge e : graph.edgeSet()) {
Integer alphaOcc = alphaWellCounts.get(plateVtoAMap.get(graph.getEdgeSource(e)));
Integer betaOcc = betaWellCounts.get(plateVtoBMap.get(graph.getEdgeTarget(e)));
Integer alphaOcc = graph.getEdgeSource(e).getOccupancy();
Integer betaOcc = graph.getEdgeTarget(e).getOccupancy();
if (Math.abs(alphaOcc - betaOcc) >= maxOccupancyDifference) {
if (saveEdges) {
Integer source = graph.getEdgeSource(e);
Integer target = graph.getEdgeTarget(e);
Vertex source = graph.getEdgeSource(e);
Vertex target = graph.getEdgeTarget(e);
Integer weight = (int) graph.getEdgeWeight(e);
Integer[] edge = {source, target, weight};
removedEdges.add(edge);
Vertex[] edge = {source, target};
removedEdges.put(edge, weight);
}
else {
graph.setEdgeWeight(e, 0.0);
@@ -58,34 +55,30 @@ public interface GraphModificationFunctions {
}
}
if(saveEdges) {
for (Integer[] edge : removedEdges) {
for (Vertex[] edge : removedEdges.keySet()) {
graph.removeEdge(edge[0], edge[1]);
}
}
return removedEdges;
}
//Remove edges for pairs where overlap size is significantly lower than the well occupancy
static List<Integer[]> filterByOverlapPercent(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
Map<Integer, Integer> alphaWellCounts,
Map<Integer, Integer> betaWellCounts,
Map<Integer, Integer> plateVtoAMap,
Map<Integer, Integer> plateVtoBMap,
//Remove edges for pairs where overlap size is significantly lower than the well occupancy, return removed edges
static Map<Vertex[], Integer> filterByOverlapPercent(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
Integer minOverlapPercent,
boolean saveEdges) {
List<Integer[]> removedEdges = new ArrayList<>();
Map<Vertex[], Integer> removedEdges = new HashMap<>();
for (DefaultWeightedEdge e : graph.edgeSet()) {
Integer alphaOcc = alphaWellCounts.get(plateVtoAMap.get(graph.getEdgeSource(e)));
Integer betaOcc = betaWellCounts.get(plateVtoBMap.get(graph.getEdgeTarget(e)));
Integer alphaOcc = graph.getEdgeSource(e).getOccupancy();
Integer betaOcc = graph.getEdgeTarget(e).getOccupancy();
double weight = graph.getEdgeWeight(e);
double min = minOverlapPercent / 100.0;
if ((weight / alphaOcc < min) || (weight / betaOcc < min)) {
if(saveEdges) {
Integer source = graph.getEdgeSource(e);
Integer target = graph.getEdgeTarget(e);
if (saveEdges) {
Vertex source = graph.getEdgeSource(e);
Vertex target = graph.getEdgeTarget(e);
Integer intWeight = (int) graph.getEdgeWeight(e);
Integer[] edge = {source, target, intWeight};
removedEdges.add(edge);
Vertex[] edge = {source, target};
removedEdges.put(edge, intWeight);
}
else {
graph.setEdgeWeight(e, 0.0);
@@ -93,19 +86,53 @@ public interface GraphModificationFunctions {
}
}
if(saveEdges) {
for (Integer[] edge : removedEdges) {
for (Vertex[] edge : removedEdges.keySet()) {
graph.removeEdge(edge[0], edge[1]);
}
}
return removedEdges;
}
static void addRemovedEdges(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
List<Integer[]> removedEdges) {
for (Integer[] edge : removedEdges) {
static Map<Vertex[], Integer> filterByRelativeReadCount (SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph, Integer threshold, boolean saveEdges) {
Map<Vertex[], Integer> removedEdges = new HashMap<>();
Boolean passes;
for (DefaultWeightedEdge e : graph.edgeSet()) {
Integer alphaReadCount = graph.getEdgeSource(e).getReadCount();
Integer betaReadCount = graph.getEdgeTarget(e).getReadCount();
passes = RelativeReadCountFilterFunction(threshold, alphaReadCount, betaReadCount);
if (!passes) {
if (saveEdges) {
Vertex source = graph.getEdgeSource(e);
Vertex target = graph.getEdgeTarget(e);
Integer intWeight = (int) graph.getEdgeWeight(e);
Vertex[] edge = {source, target};
removedEdges.put(edge, intWeight);
}
else {
graph.setEdgeWeight(e, 0.0);
}
}
}
if(saveEdges) {
for (Vertex[] edge : removedEdges.keySet()) {
graph.removeEdge(edge[0], edge[1]);
}
}
return removedEdges;
}
static Boolean RelativeReadCountFilterFunction(Integer threshold, Integer alphaReadCount, Integer betaReadCount) {
return Math.abs(alphaReadCount - betaReadCount) < threshold;
}
static void addRemovedEdges(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
Map<Vertex[], Integer> removedEdges) {
for (Vertex[] edge : removedEdges.keySet()) {
DefaultWeightedEdge e = graph.addEdge(edge[0], edge[1]);
graph.setEdgeWeight(e, (double) edge[2]);
graph.setEdgeWeight(e, removedEdges.get(edge));
}
}
}

View File

@@ -6,6 +6,7 @@ import java.util.Map;
//Can't just write the graph, because I need the occupancy data too.
//Makes most sense to serialize object and write that to a file.
//Which means there's no reason to split map data and graph data up.
//Custom vertex class means a lot of the map data can now be encoded in the graph itself
public class GraphWithMapData implements java.io.Serializable {
private String sourceFilename;
@@ -14,33 +15,41 @@ public class GraphWithMapData implements java.io.Serializable {
private Integer[] wellPopulations;
private Integer alphaCount;
private Integer betaCount;
private final Map<Integer, Integer> distCellsMapAlphaKey;
private final Map<Integer, Integer> plateVtoAMap;
private final Map<Integer, Integer> plateVtoBMap;
private final Map<Integer, Integer> plateAtoVMap;
private final Map<Integer, Integer> plateBtoVMap;
private final Map<Integer, Integer> alphaWellCounts;
private final Map<Integer, Integer> betaWellCounts;
private int readDepth;
private double readErrorRate;
private double errorCollisionRate;
private final Map<String, String> distCellsMapAlphaKey;
// private final Map<Integer, Integer> plateVtoAMap;
// private final Map<Integer, Integer> plateVtoBMap;
// private final Map<Integer, Integer> plateAtoVMap;
// private final Map<Integer, Integer> plateBtoVMap;
// private final Map<Integer, Integer> alphaWellCounts;
// private final Map<Integer, Integer> betaWellCounts;
private final Duration time;
public GraphWithMapData(SimpleWeightedGraph graph, Integer numWells, Integer[] wellConcentrations,
Integer alphaCount, Integer betaCount,
Map<Integer, Integer> distCellsMapAlphaKey, Map<Integer, Integer> plateVtoAMap,
Map<Integer,Integer> plateVtoBMap, Map<Integer, Integer> plateAtoVMap,
Map<Integer, Integer> plateBtoVMap, Map<Integer, Integer> alphaWellCounts,
Map<Integer, Integer> betaWellCounts, Duration time) {
Map<String, String> distCellsMapAlphaKey, Integer alphaCount, Integer betaCount,
Integer readDepth, Double readErrorRate, Double errorCollisionRate, Duration time){
// Map<Integer, Integer> plateVtoAMap,
// Map<Integer,Integer> plateVtoBMap, Map<Integer, Integer> plateAtoVMap,
// Map<Integer, Integer> plateBtoVMap, Map<Integer, Integer> alphaWellCounts,
// Map<Integer, Integer> betaWellCounts,) {
this.graph = graph;
this.numWells = numWells;
this.wellPopulations = wellConcentrations;
this.alphaCount = alphaCount;
this.betaCount = betaCount;
this.distCellsMapAlphaKey = distCellsMapAlphaKey;
this.plateVtoAMap = plateVtoAMap;
this.plateVtoBMap = plateVtoBMap;
this.plateAtoVMap = plateAtoVMap;
this.plateBtoVMap = plateBtoVMap;
this.alphaWellCounts = alphaWellCounts;
this.betaWellCounts = betaWellCounts;
// this.plateVtoAMap = plateVtoAMap;
// this.plateVtoBMap = plateVtoBMap;
// this.plateAtoVMap = plateAtoVMap;
// this.plateBtoVMap = plateBtoVMap;
// this.alphaWellCounts = alphaWellCounts;
// this.betaWellCounts = betaWellCounts;
this.readDepth = readDepth;
this.readErrorRate = readErrorRate;
this.errorCollisionRate = errorCollisionRate;
this.time = time;
}
@@ -64,33 +73,35 @@ public class GraphWithMapData implements java.io.Serializable {
return betaCount;
}
public Map<Integer, Integer> getDistCellsMapAlphaKey() {
public Map<String, String> getDistCellsMapAlphaKey() {
return distCellsMapAlphaKey;
}
public Map<Integer, Integer> getPlateVtoAMap() {
return plateVtoAMap;
}
// public Map<Integer, Integer> getPlateVtoAMap() {
// return plateVtoAMap;
// }
//
// public Map<Integer, Integer> getPlateVtoBMap() {
// return plateVtoBMap;
// }
//
// public Map<Integer, Integer> getPlateAtoVMap() {
// return plateAtoVMap;
// }
//
// public Map<Integer, Integer> getPlateBtoVMap() {
// return plateBtoVMap;
// }
//
// public Map<Integer, Integer> getAlphaWellCounts() {
// return alphaWellCounts;
// }
//
// public Map<Integer, Integer> getBetaWellCounts() {
// return betaWellCounts;
// }
public Map<Integer, Integer> getPlateVtoBMap() {
return plateVtoBMap;
}
public Map<Integer, Integer> getPlateAtoVMap() {
return plateAtoVMap;
}
public Map<Integer, Integer> getPlateBtoVMap() {
return plateBtoVMap;
}
public Map<Integer, Integer> getAlphaWellCounts() {
return alphaWellCounts;
}
public Map<Integer, Integer> getBetaWellCounts() {
return betaWellCounts;
}
public Integer getReadDepth() { return readDepth; }
public Duration getTime() {
return time;
@@ -103,4 +114,12 @@ public class GraphWithMapData implements java.io.Serializable {
public String getSourceFilename() {
return sourceFilename;
}
public Double getReadErrorRate() {
return readErrorRate;
}
public Double getErrorCollisionRate() {
return errorCollisionRate;
}
}

View File

@@ -0,0 +1,4 @@
public enum HeapType {
FIBONACCI,
PAIRING
}

View File

@@ -250,6 +250,11 @@ public class InteractiveInterface {
String filename = null;
String cellFile = null;
String plateFile = null;
Boolean simulateReadDepth = false;
//number of times to read each sequence in a well
int readDepth = 1;
double readErrorRate = 0.0;
double errorCollisionRate = 0.0;
try {
String str = "\nGenerating bipartite weighted graph encoding occupancy overlap data ";
str = str.concat("\nrequires a cell sample file and a sample plate file.");
@@ -258,7 +263,36 @@ public class InteractiveInterface {
cellFile = sc.next();
System.out.print("\nPlease enter name of an existing sample plate file: ");
plateFile = sc.next();
System.out.println("\nThe graph and occupancy data will be written to a serialized binary file.");
System.out.println("\nEnable simulation of sequence read depth and sequence read errors? (y/n)");
System.out.println("NOTE: sample plate data cannot be cached when simulating read errors");
String ans = sc.next();
Pattern pattern = Pattern.compile("(?:yes|y)", Pattern.CASE_INSENSITIVE);
Matcher matcher = pattern.matcher(ans);
if(matcher.matches()){
simulateReadDepth = true;
}
if (simulateReadDepth) {
BiGpairSEQ.setCachePlate(false);
BiGpairSEQ.clearPlateInMemory();
System.out.print("\nPlease enter read depth (the integer number of reads per sequence): ");
readDepth = sc.nextInt();
if(readDepth < 1) {
throw new InputMismatchException("The read depth must be an integer >= 1");
}
System.out.print("\nPlease enter probability of a sequence read error (0.0 to 1.0): ");
readErrorRate = sc.nextDouble();
if(readErrorRate < 0.0 || readErrorRate > 1.0) {
throw new InputMismatchException("The read error rate must be in the range [0.0, 1.0]");
}
System.out.println("\nPlease enter the probability of read error collision");
System.out.println("(the likelihood that two read errors produce the same spurious sequence)");
System.out.print("(0.0 to 1.0): ");
errorCollisionRate = sc.nextDouble();
if(errorCollisionRate < 0.0 || errorCollisionRate > 1.0) {
throw new InputMismatchException("The error collision probability must be an in the range [0.0, 1.0]");
}
}
System.out.println("\nThe graph and occupancy data will be written to a file.");
System.out.print("Please enter a name for the output file: ");
filename = sc.next();
} catch (InputMismatchException ex) {
@@ -304,7 +338,7 @@ public class InteractiveInterface {
System.out.println("Returning to main menu.");
}
else{
GraphWithMapData data = Simulator.makeGraph(cellSample, plate, true);
GraphWithMapData data = Simulator.makeCDR3Graph(cellSample, plate, readDepth, readErrorRate, errorCollisionRate, true);
assert filename != null;
if(BiGpairSEQ.outputBinary()) {
GraphDataObjectWriter dataWriter = new GraphDataObjectWriter(filename, data);
@@ -504,7 +538,7 @@ public class InteractiveInterface {
System.out.println("2) Turn " + getOnOff(!BiGpairSEQ.cachePlate()) + " plate file caching");
System.out.println("3) Turn " + getOnOff(!BiGpairSEQ.cacheGraph()) + " graph/data file caching");
System.out.println("4) Turn " + getOnOff(!BiGpairSEQ.outputBinary()) + " serialized binary graph output");
System.out.println("5) Turn " + getOnOff(!BiGpairSEQ.outputGraphML()) + " GraphML graph output");
System.out.println("5) Turn " + getOnOff(!BiGpairSEQ.outputGraphML()) + " GraphML graph output (for data portability to other programs)");
System.out.println("6) Maximum weight matching algorithm options");
System.out.println("0) Return to main menu");
try {
@@ -570,6 +604,8 @@ public class InteractiveInterface {
}
private static void acknowledge(){
System.out.println("BiGpairSEQ_Sim " + BiGpairSEQ.getVersion());
System.out.println();
System.out.println("This program simulates BiGpairSEQ, a graph theory based adaptation");
System.out.println("of the pairSEQ algorithm for pairing T cell receptor sequences.");
System.out.println();

View File

@@ -9,27 +9,34 @@ public class MatchingResult {
private final List<String> comments;
private final List<String> headers;
private final List<List<String>> allResults;
private final Map<Integer, Integer> matchMap;
private final Duration time;
private final Map<String, String> matchMap;
public MatchingResult(Map<String, String> metadata, List<String> headers,
List<List<String>> allResults, Map<Integer, Integer>matchMap, Duration time){
List<List<String>> allResults, Map<String, String>matchMap){
/*
* POSSIBLE KEYS FOR METADATA MAP ARE:
* sample plate filename *
* graph filename *
* matching weight *
* well populations *
* total alphas found *
* total betas found *
* high overlap threshold *
* low overlap threshold *
* maximum occupancy difference *
* minimum overlap percent *
* sequence read depth *
* sequence read error rate *
* read error collision rate *
* total alphas read from plate *
* total betas read from plate *
* alphas in graph (after pre-filtering) *
* betas in graph (after pre-filtering) *
* high overlap threshold for pairing *
* low overlap threshold for pairing *
* maximum occupancy difference for pairing *
* minimum overlap percent for pairing *
* pairing attempt rate *
* correct pairing count *
* incorrect pairing count *
* pairing error rate *
* simulation time (seconds)
* time to generate graph (seconds) *
* time to pair sequences (seconds) *
* total simulation time (seconds) *
*/
this.metadata = metadata;
this.comments = new ArrayList<>();
@@ -39,8 +46,6 @@ public class MatchingResult {
this.headers = headers;
this.allResults = allResults;
this.matchMap = matchMap;
this.time = time;
}
public Map<String, String> getMetadata() {return metadata;}
@@ -57,13 +62,13 @@ public class MatchingResult {
return headers;
}
public Map<Integer, Integer> getMatchMap() {
public Map<String, String> getMatchMap() {
return matchMap;
}
public Duration getTime() {
return time;
}
// public Duration getTime() {
// return time;
// }
public String getPlateFilename() {
return metadata.get("sample plate filename");
@@ -84,20 +89,20 @@ public class MatchingResult {
}
public Integer getAlphaCount() {
return Integer.parseInt(metadata.get("total alpha count"));
return Integer.parseInt(metadata.get("total alphas read from plate"));
}
public Integer getBetaCount() {
return Integer.parseInt(metadata.get("total beta count"));
return Integer.parseInt(metadata.get("total betas read from plate"));
}
public Integer getHighOverlapThreshold() { return Integer.parseInt(metadata.get("high overlap threshold"));}
public Integer getHighOverlapThreshold() { return Integer.parseInt(metadata.get("high overlap threshold for pairing"));}
public Integer getLowOverlapThreshold() { return Integer.parseInt(metadata.get("low overlap threshold"));}
public Integer getLowOverlapThreshold() { return Integer.parseInt(metadata.get("low overlap threshold for pairing"));}
public Integer getMaxOccupancyDifference() { return Integer.parseInt(metadata.get("maximum occupancy difference"));}
public Integer getMaxOccupancyDifference() { return Integer.parseInt(metadata.get("maximum occupancy difference for pairing"));}
public Integer getMinOverlapPercent() { return Integer.parseInt(metadata.get("minimum overlap percent"));}
public Integer getMinOverlapPercent() { return Integer.parseInt(metadata.get("minimum overlap percent for pairing"));}
public Double getPairingAttemptRate() { return Double.parseDouble(metadata.get("pairing attempt rate"));}
@@ -107,6 +112,6 @@ public class MatchingResult {
public Double getPairingErrorRate() { return Double.parseDouble(metadata.get("pairing error rate"));}
public String getSimulationTime() { return metadata.get("simulation time (seconds)"); }
public String getSimulationTime() { return metadata.get("total simulation time (seconds)"); }
}

View File

@@ -5,13 +5,14 @@ TODO: Implement exponential distribution using inversion method - DONE
TODO: Implement discrete frequency distributions using Vose's Alias Method
*/
import java.util.*;
public class Plate {
private CellSample cells;
private String sourceFile;
private String filename;
private List<List<Integer[]>> wells;
private List<List<String[]>> wells;
private final Random rand = BiGpairSEQ.getRand();
private int size;
private double error;
@@ -48,13 +49,13 @@ public class Plate {
}
//constructor for returning a Plate from a PlateFileReader
public Plate(String filename, List<List<Integer[]>> wells) {
public Plate(String filename, List<List<String[]>> wells) {
this.filename = filename;
this.wells = wells;
this.size = wells.size();
List<Integer> concentrations = new ArrayList<>();
for (List<Integer[]> w: wells) {
for (List<String[]> w: wells) {
if(!concentrations.contains(w.size())){
concentrations.add(w.size());
}
@@ -65,7 +66,7 @@ public class Plate {
}
}
private void fillWellsExponential(List<Integer[]> cells, double lambda){
private void fillWellsExponential(List<String[]> cells, double lambda){
this.lambda = lambda;
exponential = true;
int numSections = populations.length;
@@ -74,17 +75,17 @@ public class Plate {
int n;
while (section < numSections){
for (int i = 0; i < (size / numSections); i++) {
List<Integer[]> well = new ArrayList<>();
List<String[]> well = new ArrayList<>();
for (int j = 0; j < populations[section]; j++) {
do {
//inverse transform sampling: for random number u in [0,1), x = log(1-u) / (-lambda)
m = (Math.log10((1 - rand.nextDouble()))/(-lambda)) * Math.sqrt(cells.size());
} while (m >= cells.size() || m < 0);
n = (int) Math.floor(m);
Integer[] cellToAdd = cells.get(n).clone();
String[] cellToAdd = cells.get(n).clone();
for(int k = 0; k < cellToAdd.length; k++){
if(Math.abs(rand.nextDouble()) < error){//error applied to each seqeunce
cellToAdd[k] = -1;
if(Math.abs(rand.nextDouble()) <= error){//error applied to each sequence
cellToAdd[k] = "-1";
}
}
well.add(cellToAdd);
@@ -95,7 +96,7 @@ public class Plate {
}
}
private void fillWells( List<Integer[]> cells, double stdDev) {
private void fillWells( List<String[]> cells, double stdDev) {
this.stdDev = stdDev;
int numSections = populations.length;
int section = 0;
@@ -103,16 +104,16 @@ public class Plate {
int n;
while (section < numSections){
for (int i = 0; i < (size / numSections); i++) {
List<Integer[]> well = new ArrayList<>();
List<String[]> well = new ArrayList<>();
for (int j = 0; j < populations[section]; j++) {
do {
m = (rand.nextGaussian() * stdDev) + (cells.size() / 2);
} while (m >= cells.size() || m < 0);
n = (int) Math.floor(m);
Integer[] cellToAdd = cells.get(n).clone();
String[] cellToAdd = cells.get(n).clone();
for(int k = 0; k < cellToAdd.length; k++){
if(Math.abs(rand.nextDouble()) < error){//error applied to each sequence
cellToAdd[k] = -1;
cellToAdd[k] = "-1";
}
}
well.add(cellToAdd);
@@ -143,39 +144,185 @@ public class Plate {
return error;
}
public List<List<Integer[]>> getWells() {
public List<List<String[]>> getWells() {
return wells;
}
//returns a map of the counts of the sequence at cell index sIndex, in all wells
public Map<Integer, Integer> assayWellsSequenceS(int... sIndices){
return this.assayWellsSequenceS(0, size, sIndices);
}
// //returns a map of the counts of the sequence at cell index sIndex, in all wells
// public void assayWellsSequenceS(Map<String, Integer> sequences, int... sIndices){
// this.assayWellsSequenceS(sequences, 0, size, sIndices);
// }
//
// //returns a map of the counts of the sequence at cell index sIndex, in a specific well
// public void assayWellsSequenceS(Map<String, Integer> sequences, int n, int... sIndices) {
// this.assayWellsSequenceS(sequences, n, n+1, sIndices);
// }
//
// //returns a map of the counts of the sequence at cell index sIndex, in a range of wells
// public void assayWellsSequenceS(Map<String, Integer> sequences, int start, int end, int... sIndices) {
// for(int sIndex: sIndices){
// for(int i = start; i < end; i++){
// countSequences(sequences, wells.get(i), sIndex);
// }
// }
// }
// //For the sequences at cell indices sIndices, counts number of unique sequences in the given well into the given map
// private void countSequences(Map<String, Integer> wellMap, List<String[]> well, int... sIndices) {
// for(String[] cell : well) {
// for(int sIndex: sIndices){
// //skip dropout sequences, which have value -1
// if(!"-1".equals(cell[sIndex])){
// wellMap.merge(cell[sIndex], 1, (oldValue, newValue) -> oldValue + newValue);
// }
// }
// }
// }
//returns a map of the counts of the sequence at cell index sIndex, in a specific well
public Map<Integer, Integer> assayWellsSequenceS(int n, int... sIndices) { return this.assayWellsSequenceS(n, n+1, sIndices);}
//returns a map of the counts of the sequence at cell index sIndex, in a range of wells
public Map<Integer, Integer> assayWellsSequenceS(int start, int end, int... sIndices) {
Map<Integer,Integer> assay = new HashMap<>();
for(int pIndex: sIndices){
for(int i = start; i < end; i++){
countSequences(assay, wells.get(i), pIndex);
}
}
return assay;
}
//For the sequences at cell indices sIndices, counts number of unique sequences in the given well into the given map
private void countSequences(Map<Integer, Integer> wellMap, List<Integer[]> well, int... sIndices) {
for(Integer[] cell : well) {
for(int sIndex: sIndices){
if(cell[sIndex] != -1){
wellMap.merge(cell[sIndex], 1, (oldValue, newValue) -> oldValue + newValue);
//For the sequences at cell indices sIndices, counts number of unique sequences in all well into the given map
public Map<String, SequenceRecord> countSequences(Integer readDepth, Double readErrorRate,
Double errorCollisionRate, int... sIndices) {
SequenceType[] sequenceTypes = EnumSet.allOf(SequenceType.class).toArray(new SequenceType[0]);
Map<String, Integer> distinctMisreadCounts = new HashMap<>();
Map<String, SequenceRecord> sequenceMap = new LinkedHashMap<>();
for (int well = 0; well < size; well++) {
for (String[] cell : wells.get(well)) {
for (int sIndex : sIndices) {
//skip dropout sequences, which have value -1
if (!"-1".equals(cell[sIndex])) {
for (int j = 0; j < readDepth; j++) {
//Misread sequence
if (rand.nextDouble() < readErrorRate) {
StringBuilder spurious = new StringBuilder(cell[sIndex]);
//if this sequence hasn't been misread before, or the read error is unique,
//append one more "*" than has been appended before
if (rand.nextDouble() > errorCollisionRate || !distinctMisreadCounts.containsKey(cell[sIndex])) {
distinctMisreadCounts.merge(cell[sIndex], 1, (oldValue, newValue) -> oldValue + newValue);
for (int k = 0; k < distinctMisreadCounts.get(cell[sIndex]); k++) {
spurious.append("*");
}
SequenceRecord tmp = new SequenceRecord(spurious.toString(), sequenceTypes[sIndex]);
tmp.addRead(well);
sequenceMap.put(spurious.toString(), tmp);
}
//if this is a read error collision, randomly choose a number of "*"s that has been appended before
else {
int starCount = rand.nextInt(distinctMisreadCounts.get(cell[sIndex]));
for (int k = 0; k < starCount; k++) {
spurious.append("*");
}
sequenceMap.get(spurious.toString()).addRead(well);
}
}
//sequence is read correctly
else {
if (!sequenceMap.containsKey(cell[sIndex])) {
SequenceRecord tmp = new SequenceRecord(cell[sIndex], sequenceTypes[sIndex]);
tmp.addRead(well);
sequenceMap.put(cell[sIndex], tmp);
} else {
sequenceMap.get(cell[sIndex]).addRead(well);
}
}
}
}
}
}
}
return sequenceMap;
}
// //returns a map of the counts of the sequence at cell index sIndex, in all wells
// //Simulates read depth and read errors, counts the number of reads of a unique sequence into the given map.
// public void assayWellsSequenceSWithReadDepth(Map<String, Integer> misreadCounts, Map<String, Integer> occupancyMap, Map<String, Integer> readCountMap,
// int readDepth, double readErrorProb, double errorCollisionProb, int... sIndices) {
// this.assayWellsSequenceSWithReadDepth(misreadCounts, occupancyMap, readCountMap, readDepth, readErrorProb, errorCollisionProb, 0, size, sIndices);
// }
// //returns a map of the counts of the sequence at cell index sIndex, in a specific of wells
// //Simulates read depth and read errors, counts the number of reads of a unique sequence into the given map.
// public void assayWellsSequenceSWithReadDepth(Map<String, Integer> misreadCounts, Map<String, Integer> occupancyMap, Map<String, Integer> readCountMap,
// int readDepth, double readErrorProb, double errorCollisionProb,
// int n, int... sIndices) {
// this.assayWellsSequenceSWithReadDepth(misreadCounts, occupancyMap, readCountMap, readDepth, readErrorProb, errorCollisionProb, n, n+1, sIndices);
// }
//
// //returns a map of the counts of the sequence at cell index sIndex, in a range of wells
// //Simulates read depth and read errors, counts the number of reads of a unique sequence into the given map.
// public void assayWellsSequenceSWithReadDepth(Map<String, Integer> misreadCounts, Map<String, Integer> occupancyMap, Map<String, Integer> readCountMap,
// int readDepth, double readErrorProb, double errorCollisionProb,
// int start, int end, int... sIndices) {
// for(int sIndex: sIndices){
// for(int i = start; i < end; i++){
// countSequencesWithReadDepth(misreadCounts, occupancyMap, readCountMap, readDepth, readErrorProb, errorCollisionProb, wells.get(i), sIndex);
// }
// }
// }
//
// //For the sequences at cell indices sIndices, counts number of unique sequences in the given well into the given map
// //Simulates read depth and read errors, counts the number of reads of a unique sequence into the given map.
// //NOTE: this function changes the content of the well, adding spurious cells to contain the misread sequences
// //(this is necessary because, in the simulation, the plate is read multiple times, but random misreads can only
// //be simulated once).
// //(Possibly I should refactor all of this to only require a single plate assay, to speed things up. Or at least
// //to see if it would speed things up.)
// private void countSequencesWithReadDepth(Map<String, Integer> distinctMisreadCounts, Map<String, Integer> occupancyMap, Map<String, Integer> readCountMap,
// int readDepth, double readErrorProb, double errorCollisionProb,
// List<String[]> well, int... sIndices) {
// //list of spurious cells to add to well after counting
// List<String[]> spuriousCells = new ArrayList<>();
// for(String[] cell : well) {
// //new potential spurious cell for each cell that gets read
// String[] spuriousCell = new String[SequenceType.values().length];
// //initialize spurious cell with all dropout sequences
// Arrays.fill(spuriousCell, "-1");
// //has a read error occurred?
// boolean readError = false;
// for(int sIndex: sIndices){
// //skip dropout sequences, which have value "-1"
// if(!"-1".equals(cell[sIndex])){
// Map<String, Integer> sequencesWithReadCounts = new LinkedHashMap<>();
// for(int i = 0; i < readDepth; i++) {
// if (rand.nextDouble() <= readErrorProb) {
// readError = true;
// //Read errors are represented by appending "*"s to the end of the sequence some number of times
// StringBuilder spurious = new StringBuilder(cell[sIndex]);
// //if this sequence hasn't been misread before, or the read error is unique,
// //append one more "*" than has been appended before
// if (!distinctMisreadCounts.containsKey(cell[sIndex]) || rand.nextDouble() > errorCollisionProb) {
// distinctMisreadCounts.merge(cell[sIndex], 1, (oldValue, newValue) -> oldValue + newValue);
// for (int j = 0; j < distinctMisreadCounts.get(cell[sIndex]); j++) {
// spurious.append("*");
// }
// }
// //if this is a read error collision, randomly choose a number of "*"s that has been appended before
// else {
// int starCount = rand.nextInt(distinctMisreadCounts.get(cell[sIndex]));
// for (int j = 0; j < starCount; j++) {
// spurious.append("*");
// }
// }
// sequencesWithReadCounts.merge(spurious.toString(), 1, (oldValue, newValue) -> oldValue + newValue);
// //add spurious sequence to spurious cell
// spuriousCell[sIndex] = spurious.toString();
// }
// else {
// sequencesWithReadCounts.merge(cell[sIndex], 1, (oldValue, newValue) -> oldValue + newValue);
// }
// }
// for(String seq : sequencesWithReadCounts.keySet()) {
// occupancyMap.merge(seq, 1, (oldValue, newValue) -> oldValue + newValue);
// readCountMap.merge(seq, sequencesWithReadCounts.get(seq), (oldValue, newValue) -> oldValue + newValue);
// }
// }
// }
// if (readError) { //only add a new spurious cell if there was a read error
// spuriousCells.add(spuriousCell);
// }
// }
// //add all spurious cells to the well
// well.addAll(spuriousCells);
// }
public String getSourceFileName() {
return sourceFile;
}

View File

@@ -13,7 +13,7 @@ import java.util.regex.Pattern;
public class PlateFileReader {
private List<List<Integer[]>> wells = new ArrayList<>();
private List<List<String[]>> wells = new ArrayList<>();
private String filename;
public PlateFileReader(String filename){
@@ -32,17 +32,17 @@ public class PlateFileReader {
CSVParser parser = new CSVParser(reader, plateFileFormat);
){
for(CSVRecord record: parser.getRecords()) {
List<Integer[]> well = new ArrayList<>();
List<String[]> well = new ArrayList<>();
for(String s: record) {
if(!"".equals(s)) {
String[] intString = s.replaceAll("\\[", "")
String[] sequences = s.replaceAll("\\[", "")
.replaceAll("]", "")
.replaceAll(" ", "")
.split(",");
//System.out.println(intString);
Integer[] arr = new Integer[intString.length];
for (int i = 0; i < intString.length; i++) {
arr[i] = Integer.valueOf(intString[i]);
//System.out.println(sequences);
String[] arr = new String[sequences.length];
for (int i = 0; i < sequences.length; i++) {
arr[i] = sequences[i];
}
well.add(arr);
}

View File

@@ -10,7 +10,7 @@ import java.util.*;
public class PlateFileWriter {
private int size;
private List<List<Integer[]>> wells;
private List<List<String[]>> wells;
private double stdDev;
private double lambda;
private Double error;
@@ -40,13 +40,13 @@ public class PlateFileWriter {
}
public void writePlateFile(){
Comparator<List<Integer[]>> listLengthDescending = Comparator.comparingInt(List::size);
Comparator<List<String[]>> listLengthDescending = Comparator.comparingInt(List::size);
wells.sort(listLengthDescending.reversed());
int maxLength = wells.get(0).size();
List<List<String>> wellsAsStrings = new ArrayList<>();
for (List<Integer[]> w: wells){
for (List<String[]> w: wells){
List<String> tmp = new ArrayList<>();
for(Integer[] c: w) {
for(String[] c: w) {
tmp.add(Arrays.toString(c));
}
wellsAsStrings.add(tmp);

View File

@@ -0,0 +1,65 @@
/*
Class to represent individual sequences, holding their well occupancy and read count information.
Will make a map of these keyed to the sequences themselves.
Ideally, I'll be able to construct both the Vertices and the weights matrix from this map.
*/
import java.io.Serializable;
import java.util.*;
public class SequenceRecord implements Serializable {
private final String sequence;
private final SequenceType type;
//keys are well numbers, values are read count in that well
private final Map<Integer, Integer> wells;
public SequenceRecord (String sequence, SequenceType type) {
this.sequence = sequence;
this.type = type;
this.wells = new LinkedHashMap<>();
}
//this shouldn't be necessary, since the sequence will be the map key, but
public String getSequence() {
return sequence;
}
public SequenceType getSequenceType(){
return type;
}
//use this to update the record for each new read
public void addRead(Integer wellNumber) {
wells.merge(wellNumber,1, Integer::sum);
}
//don't know if I'll ever need this
public void addWellData(Integer wellNumber, Integer readCount) {
wells.put(wellNumber, readCount);
}
public Set<Integer> getWells() {
return wells.keySet();
}
public Map<Integer, Integer> getWellOccupancies() { return wells;}
public boolean isInWell(Integer wellNumber) {
return wells.containsKey(wellNumber);
}
public Integer getOccupancy() {
return wells.size();
}
//read count for whole plate
public Integer getReadCount(){
return wells.values().stream().mapToInt(Integer::valueOf).sum();
}
//read count in a specific well
public Integer getReadCount(Integer wellNumber) {
return wells.get(wellNumber);
}
}

View File

@@ -0,0 +1,8 @@
//enum for tagging types of sequences
//Listed in order that they appear in a cell array, so ordinal() method will return correct index
public enum SequenceType {
CDR3_ALPHA,
CDR3_BETA,
CDR1_ALPHA,
CDR1_BETA
}

View File

@@ -12,107 +12,126 @@ import java.text.NumberFormat;
import java.time.Instant;
import java.time.Duration;
import java.util.*;
import java.util.stream.IntStream;
/*
Refactor notes
What would be necessary to do everything with only one scan through the sample plate?
I would need to keep a list of sequences (real and spurious), and metadata about each sequence.
I would need the data:
* # of each well the sequence appears in
* Read count in that well
*/
import static java.lang.Float.*;
//NOTE: "sequence" in method and variable names refers to a peptide sequence from a simulated T cell
public class Simulator implements GraphModificationFunctions {
private static final int cdr3AlphaIndex = 0;
private static final int cdr3BetaIndex = 1;
private static final int cdr1AlphaIndex = 2;
private static final int cdr1BetaIndex = 3;
//Make the graph needed for matching CDR3s
public static GraphWithMapData makeGraph(CellSample cellSample, Plate samplePlate, boolean verbose) {
public static GraphWithMapData makeCDR3Graph(CellSample cellSample, Plate samplePlate, int readDepth,
double readErrorRate, double errorCollisionRate, boolean verbose) {
//start timing
Instant start = Instant.now();
List<Integer[]> distinctCells = cellSample.getCells();
int[] alphaIndex = {cdr3AlphaIndex};
int[] betaIndex = {cdr3BetaIndex};
int[] alphaIndices = {SequenceType.CDR3_ALPHA.ordinal()};
int[] betaIndices = {SequenceType.CDR3_BETA.ordinal()};
List<String[]> distinctCells = cellSample.getCells();
int numWells = samplePlate.getSize();
//Make a hashmap keyed to alphas, values are associated betas.
if(verbose){System.out.println("Making cell maps");}
//HashMap keyed to Alphas, values Betas
Map<Integer, Integer> distCellsMapAlphaKey = makeSequenceToSequenceMap(distinctCells, 0, 1);
Map<String, String> distCellsMapAlphaKey = makeSequenceToSequenceMap(distinctCells,
SequenceType.CDR3_ALPHA.ordinal(), SequenceType.CDR3_BETA.ordinal());
if(verbose){System.out.println("Cell maps made");}
if(verbose){System.out.println("Making well maps");}
Map<Integer, Integer> allAlphas = samplePlate.assayWellsSequenceS(alphaIndex);
Map<Integer, Integer> allBetas = samplePlate.assayWellsSequenceS(betaIndex);
int alphaCount = allAlphas.size();
if(verbose){System.out.println("All alphas count: " + alphaCount);}
int betaCount = allBetas.size();
if(verbose){System.out.println("All betas count: " + betaCount);}
if(verbose){System.out.println("Well maps made");}
//Make linkedHashMap keyed to sequences, values are SequenceRecords reflecting plate statistics
if(verbose){System.out.println("Making sample plate sequence maps");}
Map<String, SequenceRecord> alphaSequences = samplePlate.countSequences(readDepth, readErrorRate,
errorCollisionRate, alphaIndices);
int alphaCount = alphaSequences.size();
if(verbose){System.out.println("Alphas sequences read: " + alphaCount);}
Map<String, SequenceRecord> betaSequences = samplePlate.countSequences(readDepth, readErrorRate,
errorCollisionRate, betaIndices);
int betaCount = betaSequences.size();
if(verbose){System.out.println("Betas sequences read: " + betaCount);}
if(verbose){System.out.println("Sample plate sequence maps made");}
//pre-filter saturating sequences and sequences likely to be misreads
if(verbose){System.out.println("Removing sequences present in all wells.");}
filterByOccupancyThresholds(allAlphas, 1, numWells - 1);
filterByOccupancyThresholds(allBetas, 1, numWells - 1);
filterByOccupancyThresholds(alphaSequences, 1, numWells - 1);
filterByOccupancyThresholds(betaSequences, 1, numWells - 1);
if(verbose){System.out.println("Sequences removed");}
int pairableAlphaCount = allAlphas.size();
if(verbose){System.out.println("Remaining alphas count: " + pairableAlphaCount);}
int pairableBetaCount = allBetas.size();
if(verbose){System.out.println("Remaining betas count: " + pairableBetaCount);}
if(verbose){System.out.println("Remaining alpha sequence count: " + alphaSequences.size());}
if(verbose){System.out.println("Remaining beta sequence count: " + betaSequences.size());}
if (readDepth > 1) {
if(verbose){System.out.println("Removing sequences with disparate occupancies and read counts");}
filterByOccupancyAndReadCount(alphaSequences, readDepth);
filterByOccupancyAndReadCount(betaSequences, readDepth);
if(verbose){System.out.println("Sequences removed");}
if(verbose){System.out.println("Remaining alpha sequence count: " + alphaSequences.size());}
if(verbose){System.out.println("Remaining beta sequence count: " + betaSequences.size());}
}
int pairableAlphaCount = alphaSequences.size();
if(verbose){System.out.println("Remaining alpha sequence count: " + pairableAlphaCount);}
int pairableBetaCount = betaSequences.size();
if(verbose){System.out.println("Remaining beta sequence count: " + pairableBetaCount);}
//construct the graph. For simplicity, going to make
if(verbose){System.out.println("Making vertex maps");}
//For the SimpleWeightedBipartiteGraphMatrixGenerator, all vertices must have
//distinct numbers associated with them. Since I'm using a 2D array, that means
//distinct indices between the rows and columns. vertexStartValue lets me track where I switch
//from numbering rows to columns, so I can assign unique numbers to every vertex, and then
//subtract the vertexStartValue from betas to use their vertex labels as array indices
Integer vertexStartValue = 0;
int vertexStartValue = 0;
//keys are sequential integer vertices, values are alphas
Map<Integer, Integer> plateVtoAMap = makeVertexToSequenceMap(allAlphas, vertexStartValue);
Map<String, Integer> plateAtoVMap = makeSequenceToVertexMap(alphaSequences, vertexStartValue);
//new start value for vertex to beta map should be one more than final vertex value in alpha map
vertexStartValue += plateVtoAMap.size();
//keys are sequential integers vertices, values are betas
Map<Integer, Integer> plateVtoBMap = makeVertexToSequenceMap(allBetas, vertexStartValue);
//keys are alphas, values are sequential integer vertices from previous map
Map<Integer, Integer> plateAtoVMap = invertVertexMap(plateVtoAMap);
//keys are betas, values are sequential integer vertices from previous map
Map<Integer, Integer> plateBtoVMap = invertVertexMap(plateVtoBMap);
vertexStartValue += plateAtoVMap.size();
//keys are betas, values are sequential integers
Map<String, Integer> plateBtoVMap = makeSequenceToVertexMap(betaSequences, vertexStartValue);
if(verbose){System.out.println("Vertex maps made");}
//make adjacency matrix for bipartite graph generator
//(technically this is only 1/4 of an adjacency matrix, but that's all you need
//for a bipartite graph, and all the SimpleWeightedBipartiteGraphMatrixGenerator class expects.)
if(verbose){System.out.println("Creating adjacency matrix");}
//Count how many wells each alpha appears in
Map<Integer, Integer> alphaWellCounts = new HashMap<>();
//count how many wells each beta appears in
Map<Integer, Integer> betaWellCounts = new HashMap<>();
//the adjacency matrix to be used by the graph generator
double[][] weights = new double[plateVtoAMap.size()][plateVtoBMap.size()];
countSequencesAndFillMatrix(samplePlate, allAlphas, allBetas, plateAtoVMap,
plateBtoVMap, alphaIndex, betaIndex, alphaWellCounts, betaWellCounts, weights);
if(verbose){System.out.println("Matrix created");}
//create bipartite graph
if(verbose){System.out.println("Creating graph");}
if(verbose){System.out.println("Making adjacency matrix");}
double[][] weights = new double[plateAtoVMap.size()][plateBtoVMap.size()];
fillAdjacencyMatrix(weights, vertexStartValue, alphaSequences, betaSequences, plateAtoVMap, plateBtoVMap);
if(verbose){System.out.println("Adjacency matrix made");}
//make bipartite graph
if(verbose){System.out.println("Making bipartite weighted graph");}
//the graph object
SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph =
SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph =
new SimpleWeightedGraph<>(DefaultWeightedEdge.class);
//the graph generator
SimpleWeightedBipartiteGraphMatrixGenerator graphGenerator = new SimpleWeightedBipartiteGraphMatrixGenerator();
//the list of alpha vertices
List<Integer> alphaVertices = new ArrayList<>(plateVtoAMap.keySet()); //This will work because LinkedHashMap preserves order of entry
List<Vertex> alphaVertices = new ArrayList<>();
for (String seq : plateAtoVMap.keySet()) {
Vertex alphaVertex = new Vertex(alphaSequences.get(seq), plateAtoVMap.get(seq));
alphaVertices.add(alphaVertex);
}
//Sort to make sure the order of vertices in list matches the order of the adjacency matrix
Collections.sort(alphaVertices);
//Add ordered list of vertices to the graph
graphGenerator.first(alphaVertices);
//the list of beta vertices
List<Integer> betaVertices = new ArrayList<>(plateVtoBMap.keySet());
graphGenerator.second(betaVertices); //This will work because LinkedHashMap preserves order of entry
List<Vertex> betaVertices = new ArrayList<>();
for (String seq : plateBtoVMap.keySet()) {
Vertex betaVertex = new Vertex(betaSequences.get(seq), plateBtoVMap.get(seq));
betaVertices.add(betaVertex);
}
//Sort to make sure the order of vertices in list matches the order of the adjacency matrix
Collections.sort(betaVertices);
//Add ordered list of vertices to the graph
graphGenerator.second(betaVertices);
//use adjacency matrix of weight created previously
graphGenerator.weights(weights);
graphGenerator.generateGraph(graph);
if(verbose){System.out.println("Graph created");}
//stop timing
Instant stop = Instant.now();
Duration time = Duration.between(start, stop);
//create GraphWithMapData object
GraphWithMapData output = new GraphWithMapData(graph, numWells, samplePlate.getPopulations(), alphaCount, betaCount,
distCellsMapAlphaKey, plateVtoAMap, plateVtoBMap, plateAtoVMap,
plateBtoVMap, alphaWellCounts, betaWellCounts, time);
GraphWithMapData output = new GraphWithMapData(graph, numWells, samplePlate.getPopulations(), distCellsMapAlphaKey,
alphaCount, betaCount, readDepth, readErrorRate, errorCollisionRate, time);
//Set source file name in graph to name of sample plate
output.setSourceFilename(samplePlate.getFilename());
//return GraphWithMapData object
@@ -124,61 +143,67 @@ public class Simulator implements GraphModificationFunctions {
Integer highThreshold, Integer maxOccupancyDifference,
Integer minOverlapPercent, boolean verbose) {
Instant start = Instant.now();
List<Integer[]> removedEdges = new ArrayList<>();
SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph = data.getGraph();
Map<Vertex[], Integer> removedEdges = new HashMap<>();
boolean saveEdges = BiGpairSEQ.cacheGraph();
int numWells = data.getNumWells();
Integer alphaCount = data.getAlphaCount();
Integer betaCount = data.getBetaCount();
Map<Integer, Integer> distCellsMapAlphaKey = data.getDistCellsMapAlphaKey();
Map<Integer, Integer> plateVtoAMap = data.getPlateVtoAMap();
Map<Integer, Integer> plateVtoBMap = data.getPlateVtoBMap();
Map<Integer, Integer> alphaWellCounts = data.getAlphaWellCounts();
Map<Integer, Integer> betaWellCounts = data.getBetaWellCounts();
SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph = data.getGraph();
//Integer alphaCount = data.getAlphaCount();
//Integer betaCount = data.getBetaCount();
Map<String, String> distCellsMapAlphaKey = data.getDistCellsMapAlphaKey();
Set<Vertex> alphas = new HashSet<>();
Set<Vertex> betas = new HashSet<>();
for(Vertex v: graph.vertexSet()) {
if (SequenceType.CDR3_ALPHA.equals(v.getType())){
alphas.add(v);
}
else {
betas.add(v);
}
}
Integer graphAlphaCount = alphas.size();
Integer graphBetaCount = betas.size();
//remove edges with weights outside given overlap thresholds, add those to removed edge list
if(verbose){System.out.println("Eliminating edges with weights outside overlap threshold values");}
removedEdges.addAll(GraphModificationFunctions.filterByOverlapThresholds(graph, lowThreshold, highThreshold, saveEdges));
removedEdges.putAll(GraphModificationFunctions.filterByOverlapThresholds(graph, lowThreshold, highThreshold, saveEdges));
if(verbose){System.out.println("Over- and under-weight edges removed");}
//remove edges between vertices with too small an overlap size, add those to removed edge list
if(verbose){System.out.println("Eliminating edges with weights less than " + minOverlapPercent.toString() +
" percent of vertex occupancy value.");}
removedEdges.addAll(GraphModificationFunctions.filterByOverlapPercent(graph, alphaWellCounts, betaWellCounts,
plateVtoAMap, plateVtoBMap, minOverlapPercent, saveEdges));
removedEdges.putAll(GraphModificationFunctions.filterByOverlapPercent(graph, minOverlapPercent, saveEdges));
if(verbose){System.out.println("Edges with weights too far below a vertex occupancy value removed");}
//Filter by relative occupancy
if(verbose){System.out.println("Eliminating edges between vertices with occupancy difference > "
+ maxOccupancyDifference);}
removedEdges.addAll(GraphModificationFunctions.filterByRelativeOccupancy(graph, alphaWellCounts, betaWellCounts,
plateVtoAMap, plateVtoBMap, maxOccupancyDifference, saveEdges));
removedEdges.putAll(GraphModificationFunctions.filterByRelativeOccupancy(graph, maxOccupancyDifference, saveEdges));
if(verbose){System.out.println("Edges between vertices of with excessively different occupancy values " +
"removed");}
//Find Maximum Weighted Matching
//Find Maximum Weight Matching
//using jheaps library class PairingHeap for improved efficiency
if(verbose){System.out.println("Finding maximum weighted matching");}
if(verbose){System.out.println("Finding maximum weight matching");}
MaximumWeightBipartiteMatching maxWeightMatching;
//Use correct heap type for priority queue
String heapType = BiGpairSEQ.getPriorityQueueHeapType();
switch (heapType) {
case "PAIRING" -> {
maxWeightMatching = new MaximumWeightBipartiteMatching(graph,
plateVtoAMap.keySet(),
plateVtoBMap.keySet(),
alphas,
betas,
i -> new PairingHeap(Comparator.naturalOrder()));
}
case "FIBONACCI" -> {
maxWeightMatching = new MaximumWeightBipartiteMatching(graph,
plateVtoAMap.keySet(),
plateVtoBMap.keySet(),
alphas,
betas,
i -> new FibonacciHeap(Comparator.naturalOrder()));
}
default -> {
maxWeightMatching = new MaximumWeightBipartiteMatching(graph,
plateVtoAMap.keySet(),
plateVtoBMap.keySet());
alphas,
betas);
}
}
//get the matching
@@ -205,14 +230,14 @@ public class Simulator implements GraphModificationFunctions {
int trueCount = 0;
int falseCount = 0;
boolean check;
Map<Integer, Integer> matchMap = new HashMap<>();
Map<String, String> matchMap = new HashMap<>();
while(weightIter.hasNext()) {
e = weightIter.next();
Integer source = graph.getEdgeSource(e);
Integer target = graph.getEdgeTarget(e);
Vertex source = graph.getEdgeSource(e);
Vertex target = graph.getEdgeTarget(e);
//The match map is all matches found, not just true matches!
matchMap.put(plateVtoAMap.get(source), plateVtoBMap.get(target));
check = plateVtoBMap.get(target).equals(distCellsMapAlphaKey.get(plateVtoAMap.get(source)));
matchMap.put(source.getSequence(), target.getSequence());
check = target.getSequence().equals(distCellsMapAlphaKey.get(source.getSequence()));
if(check) {
trueCount++;
}
@@ -220,17 +245,19 @@ public class Simulator implements GraphModificationFunctions {
falseCount++;
}
List<String> result = new ArrayList<>();
result.add(plateVtoAMap.get(source).toString());
//alpha sequence
result.add(source.getSequence());
//alpha well count
result.add(alphaWellCounts.get(plateVtoAMap.get(source)).toString());
result.add(plateVtoBMap.get(target).toString());
result.add(source.getOccupancy().toString());
//beta sequence
result.add(target.getSequence());
//beta well count
result.add(betaWellCounts.get(plateVtoBMap.get(target)).toString());
result.add(target.getOccupancy().toString());
//overlap count
result.add(Double.toString(graph.getEdgeWeight(e)));
result.add(Boolean.toString(check));
double pValue = Equations.pValue(numWells, alphaWellCounts.get(plateVtoAMap.get(source)),
betaWellCounts.get(plateVtoBMap.get(target)), graph.getEdgeWeight(e));
double pValue = Equations.pValue(numWells, source.getOccupancy(),
target.getOccupancy(), graph.getEdgeWeight(e));
BigDecimal pValueTrunc = new BigDecimal(pValue, mc);
result.add(pValueTrunc.toString());
allResults.add(result);
@@ -238,18 +265,20 @@ public class Simulator implements GraphModificationFunctions {
//Metadata comments for CSV file
String algoType = "LEDA book with heap: " + heapType;
int min = Math.min(alphaCount, betaCount);
int min = Math.min(graphAlphaCount, graphBetaCount);
//matching weight
BigDecimal totalMatchingWeight = maxWeightMatching.getMatchingWeight();
//rate of attempted matching
double attemptRate = (double) (trueCount + falseCount) / min;
BigDecimal attemptRateTrunc = new BigDecimal(attemptRate, mc);
//rate of pairing error
double pairingErrorRate = (double) falseCount / (trueCount + falseCount);
BigDecimal pairingErrorRateTrunc;
if(pairingErrorRate == NaN || pairingErrorRate == POSITIVE_INFINITY || pairingErrorRate == NEGATIVE_INFINITY) {
pairingErrorRateTrunc = new BigDecimal(-1, mc);
if(Double.isFinite(pairingErrorRate)) {
pairingErrorRateTrunc = new BigDecimal(pairingErrorRate, mc);
}
else{
pairingErrorRateTrunc = new BigDecimal(pairingErrorRate, mc);
pairingErrorRateTrunc = new BigDecimal(-1, mc);
}
//get list of well populations
Integer[] wellPopulations = data.getWellPopulations();
@@ -261,28 +290,44 @@ public class Simulator implements GraphModificationFunctions {
populationsStringBuilder.append(wellPopulations[i].toString());
}
String wellPopulationsString = populationsStringBuilder.toString();
//graph generation time
Duration graphTime = data.getTime();
//MWM run time
Duration pairingTime = Duration.between(start, stop);
//total simulation time
Duration time = Duration.between(start, stop);
time = time.plus(data.getTime());
Duration totalTime = graphTime.plus(pairingTime);
Map<String, String> metadata = new LinkedHashMap<>();
metadata.put("sample plate filename", data.getSourceFilename());
metadata.put("graph filename", dataFilename);
metadata.put("algorithm type", algoType);
metadata.put("MWM algorithm type", algoType);
metadata.put("matching weight", totalMatchingWeight.toString());
metadata.put("well populations", wellPopulationsString);
metadata.put("total alphas found", alphaCount.toString());
metadata.put("total betas found", betaCount.toString());
metadata.put("high overlap threshold", highThreshold.toString());
metadata.put("low overlap threshold", lowThreshold.toString());
metadata.put("minimum overlap percent", minOverlapPercent.toString());
metadata.put("maximum occupancy difference", maxOccupancyDifference.toString());
metadata.put("sequence read depth", data.getReadDepth().toString());
metadata.put("sequence read error rate", data.getReadErrorRate().toString());
metadata.put("read error collision rate", data.getErrorCollisionRate().toString());
metadata.put("total alphas read from plate", data.getAlphaCount().toString());
metadata.put("total betas read from plate", data.getBetaCount().toString());
//HARD CODED, PARAMETERIZE LATER
metadata.put("pre-filter sequences present in all wells", "true");
//HARD CODED, PARAMETERIZE LATER
metadata.put("pre-filter sequences based on occupancy/read count discrepancy", "true");
metadata.put("alphas in graph (after pre-filtering)", graphAlphaCount.toString());
metadata.put("betas in graph (after pre-filtering)", graphBetaCount.toString());
metadata.put("high overlap threshold for pairing", highThreshold.toString());
metadata.put("low overlap threshold for pairing", lowThreshold.toString());
metadata.put("minimum overlap percent for pairing", minOverlapPercent.toString());
metadata.put("maximum occupancy difference for pairing", maxOccupancyDifference.toString());
metadata.put("pairing attempt rate", attemptRateTrunc.toString());
metadata.put("correct pairing count", Integer.toString(trueCount));
metadata.put("incorrect pairing count", Integer.toString(falseCount));
metadata.put("pairing error rate", pairingErrorRateTrunc.toString());
metadata.put("simulation time (seconds)", nf.format(time.toSeconds()));
metadata.put("time to generate graph (seconds)", nf.format(graphTime.toSeconds()));
metadata.put("time to pair sequences (seconds)",nf.format(pairingTime.toSeconds()));
metadata.put("total simulation time (seconds)", nf.format(totalTime.toSeconds()));
//create MatchingResult object
MatchingResult output = new MatchingResult(metadata, header, allResults, matchMap, time);
MatchingResult output = new MatchingResult(metadata, header, allResults, matchMap);
if(verbose){
for(String s: output.getComments()){
System.out.println(s);
@@ -604,81 +649,77 @@ public class Simulator implements GraphModificationFunctions {
// }
//Remove sequences based on occupancy
public static void filterByOccupancyThresholds(Map<Integer, Integer> wellMap, int low, int high){
List<Integer> noise = new ArrayList<>();
for(Integer k: wellMap.keySet()){
if((wellMap.get(k) > high) || (wellMap.get(k) < low)){
public static void filterByOccupancyThresholds(Map<String, SequenceRecord> wellMap, int low, int high){
List<String> noise = new ArrayList<>();
for(String k: wellMap.keySet()){
if((wellMap.get(k).getOccupancy() > high) || (wellMap.get(k).getOccupancy() < low)){
noise.add(k);
}
}
for(Integer k: noise) {
for(String k: noise) {
wellMap.remove(k);
}
}
//Counts the well occupancy of the row peptides and column peptides into given maps, and
//fills weights in the given 2D array
private static void countSequencesAndFillMatrix(Plate samplePlate,
Map<Integer,Integer> allRowSequences,
Map<Integer,Integer> allColumnSequences,
Map<Integer,Integer> rowSequenceToVertexMap,
Map<Integer,Integer> columnSequenceToVertexMap,
int[] rowSequenceIndices,
int[] colSequenceIndices,
Map<Integer, Integer> rowSequenceCounts,
Map<Integer,Integer> columnSequenceCounts,
double[][] weights){
Map<Integer, Integer> wellNRowSequences = null;
Map<Integer, Integer> wellNColumnSequences = null;
int vertexStartValue = rowSequenceToVertexMap.size();
int numWells = samplePlate.getSize();
for (int n = 0; n < numWells; n++) {
wellNRowSequences = samplePlate.assayWellsSequenceS(n, rowSequenceIndices);
for (Integer a : wellNRowSequences.keySet()) {
if(allRowSequences.containsKey(a)){
rowSequenceCounts.merge(a, 1, (oldValue, newValue) -> oldValue + newValue);
}
public static void filterByOccupancyAndReadCount(Map<String, SequenceRecord> sequences, int readDepth) {
List<String> noise = new ArrayList<>();
for(String k : sequences.keySet()){
//occupancy times read depth should be more than half the sequence read count if the read error rate is low
Integer threshold = (sequences.get(k).getOccupancy() * readDepth) / 2;
if(sequences.get(k).getReadCount() < threshold) {
noise.add(k);
}
wellNColumnSequences = samplePlate.assayWellsSequenceS(n, colSequenceIndices);
for (Integer b : wellNColumnSequences.keySet()) {
if(allColumnSequences.containsKey(b)){
columnSequenceCounts.merge(b, 1, (oldValue, newValue) -> oldValue + newValue);
}
}
for (Integer i : wellNRowSequences.keySet()) {
if(allRowSequences.containsKey(i)){
for (Integer j : wellNColumnSequences.keySet()) {
if(allColumnSequences.containsKey(j)){
weights[rowSequenceToVertexMap.get(i)][columnSequenceToVertexMap.get(j) - vertexStartValue] += 1.0;
}
}
}
}
}
for(String k : noise) {
sequences.remove(k);
}
}
private static Map<Integer, Integer> makeSequenceToSequenceMap(List<Integer[]> cells, int keySequenceIndex,
int valueSequenceIndex){
Map<Integer, Integer> keySequenceToValueSequenceMap = new HashMap<>();
for (Integer[] cell : cells) {
private static Map<String, String> makeSequenceToSequenceMap(List<String[]> cells, int keySequenceIndex,
int valueSequenceIndex){
Map<String, String> keySequenceToValueSequenceMap = new HashMap<>();
for (String[] cell : cells) {
keySequenceToValueSequenceMap.put(cell[keySequenceIndex], cell[valueSequenceIndex]);
}
return keySequenceToValueSequenceMap;
}
private static Map<Integer, Integer> makeVertexToSequenceMap(Map<Integer, Integer> sequences, Integer startValue) {
Map<Integer, Integer> map = new LinkedHashMap<>(); //LinkedHashMap to preserve order of entry
Integer index = startValue; //is this necessary? I don't think I use this.
for (Integer k: sequences.keySet()) {
private static Map<Integer, String> makeVertexToSequenceMap(Map<String, SequenceRecord> sequences, Integer startValue) {
Map<Integer, String> map = new LinkedHashMap<>(); //LinkedHashMap to preserve order of entry
Integer index = startValue;
for (String k: sequences.keySet()) {
map.put(index, k);
index++;
}
return map;
}
private static Map<Integer, Integer> invertVertexMap(Map<Integer, Integer> map) {
Map<Integer, Integer> inverse = new HashMap<>();
private static Map<String, Integer> makeSequenceToVertexMap(Map<String, SequenceRecord> sequences, Integer startValue) {
Map<String, Integer> map = new LinkedHashMap<>(); //LinkedHashMap to preserve order of entry
Integer index = startValue;
for (String k: sequences.keySet()) {
map.put(k, index);
index++;
}
return map;
}
private static void fillAdjacencyMatrix(double[][] weights, Integer vertexOffsetValue, Map<String, SequenceRecord> rowSequences,
Map<String, SequenceRecord> columnSequences, Map<String, Integer> rowToVertexMap,
Map<String, Integer> columnToVertexMap) {
for (String rowSeq: rowSequences.keySet()) {
for (Integer well: rowSequences.get(rowSeq).getWells()) {
for (String colSeq: columnSequences.keySet()) {
if (columnSequences.get(colSeq).isInWell(well)) {
weights[rowToVertexMap.get(rowSeq)][columnToVertexMap.get(colSeq) - vertexOffsetValue] += 1.0;
}
}
}
}
}
private static Map<String, Integer> invertVertexMap(Map<Integer, String> map) {
Map<String, Integer> inverse = new HashMap<>();
for (Integer k : map.keySet()) {
inverse.put(map.get(k), k);
}

View File

@@ -1,23 +1,75 @@
import org.jheaps.AddressableHeap;
import java.io.Serializable;
import java.util.Map;
public class Vertex {
private final Integer vertexLabel;
private final Integer sequence;
private final Integer occupancy;
public class Vertex implements Serializable, Comparable<Vertex> {
private SequenceRecord record;
private Integer vertexLabel;
private Double potential;
private AddressableHeap queue;
public Vertex(Integer vertexLabel, Integer sequence, Integer occupancy) {
public Vertex(SequenceRecord record, Integer vertexLabel) {
this.record = record;
this.vertexLabel = vertexLabel;
this.sequence = sequence;
this.occupancy = occupancy;
}
public Integer getVertexLabel() { return vertexLabel; }
public SequenceRecord getRecord() { return record; }
public Integer getSequence() {
return sequence;
public SequenceType getType() { return record.getSequenceType(); }
public Integer getVertexLabel() {
return vertexLabel;
}
public String getSequence() {
return record.getSequence();
}
public Integer getOccupancy() {
return occupancy;
return record.getOccupancy();
}
public Integer getReadCount() { return record.getReadCount(); }
public Map<Integer, Integer> getWellOccupancies() { return record.getWellOccupancies(); }
@Override //adapted from JGraphT example code
public int hashCode()
{
return (this.getSequence() == null) ? 0 : this.getSequence().hashCode();
}
@Override //adapted from JGraphT example code
public boolean equals(Object obj)
{
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Vertex other = (Vertex) obj;
if (this.getSequence() == null) {
return other.getSequence() == null;
} else {
return this.getSequence().equals(other.getSequence());
}
}
@Override //adapted from JGraphT example code
public String toString()
{
StringBuilder sb = new StringBuilder();
sb.append("(").append(vertexLabel)
.append(", Type: ").append(this.getType().name())
.append(", Sequence: ").append(this.getSequence())
.append(", Occupancy: ").append(this.getOccupancy()).append(")");
return sb.toString();
}
@Override
public int compareTo(Vertex other) {
return this.vertexLabel - other.getVertexLabel();
}
}