Compare commits
113 Commits
32593308df
...
v1.5
| Author | SHA1 | Date | |
|---|---|---|---|
| b4cc240048 | |||
| ff72c9b359 | |||
| 88eb8aca50 | |||
| 98bf452891 | |||
| c2db4f87c1 | |||
| 8935407ade | |||
| 9fcc20343d | |||
| e4d094d796 | |||
| f385ebc31f | |||
| 8745550e11 | |||
| 41805135b3 | |||
| 373a5e02f9 | |||
| 7f18311054 | |||
| bcb816c3e6 | |||
| dad0fd35fd | |||
| 35d580cfcf | |||
| ab8d98ed81 | |||
| 3d9890e16a | |||
| dd64ac2731 | |||
| a5238624f1 | |||
| d8ba42b801 | |||
| 8edd89d784 | |||
| 2829b88689 | |||
| 108b0ec13f | |||
| a8b58d3f79 | |||
| bf64d57731 | |||
| c068c3db3c | |||
| 4bcda9b66c | |||
| 17ae763c6c | |||
| decdb147a9 | |||
| 74ffbfd8ac | |||
| 08699ce8ce | |||
| 69b0cc535c | |||
| e58f7b0a55 | |||
| dd2164c250 | |||
| 7323093bdc | |||
| f904cf6672 | |||
| 3ccee9891b | |||
| 40c2be1cfb | |||
| 4b597c4e5e | |||
| b2398531a3 | |||
| 8e9a250890 | |||
| e2a996c997 | |||
| a5db89cb0b | |||
| 1630f9ccba | |||
| d785aa0da2 | |||
| a7afeb6119 | |||
| f8167b0774 | |||
| 68ee9e4bb6 | |||
| fd2ec76b71 | |||
| 875f457a2d | |||
| 906c06062f | |||
| 90ae2ff474 | |||
| 7d983076f3 | |||
| 4b053e6ec4 | |||
| 44784b7976 | |||
| 7c19896dc9 | |||
| aec7e3016f | |||
| 5c75c1ac09 | |||
| cb1f7adece | |||
| 370de79546 | |||
| a803336f56 | |||
| 94b54b3416 | |||
| 601e141fd0 | |||
| 8f9c6b7d33 | |||
| e5ddc73723 | |||
| 9b18fac74f | |||
| 63ef6aa7a0 | |||
| 7558455f39 | |||
| 410f0ae547 | |||
| 1bc6a11545 | |||
| 2b13e10e95 | |||
| 4fd5baeb98 | |||
| b2a4e9a42b | |||
| d1bb49b482 | |||
| 9adb7dffb8 | |||
| 2023bb9d7e | |||
| 405fbf17ff | |||
| 24519f4a52 | |||
| 2afd01eeef | |||
| 10d0b711bf | |||
| 8f98baf44e | |||
| d6c7c40c96 | |||
| 61c14b2ecf | |||
| 22fc4aedfe | |||
| 5d24dc6f70 | |||
| 2c01a0211c | |||
| f2b5d9e1b7 | |||
| 74c8cafd81 | |||
| d1c37b5ccd | |||
| cb2c5a6024 | |||
| 284a5b3a40 | |||
| 52afb1edc2 | |||
| 9c52bc878a | |||
| 248fe4d662 | |||
| 5d0e60708c | |||
| c96b7237e9 | |||
| 0b28259800 | |||
| 837ef7bfe4 | |||
| 0bebbc7602 | |||
| 84f7ddb696 | |||
| c4633da9eb | |||
| 5b2ed165d0 | |||
| 0026d8cdfe | |||
| 13fb7168bf | |||
| 568a6be3c7 | |||
| cfa473c7ce | |||
| 6faacd9a82 | |||
| ce88e170c1 | |||
| 47e23addfa | |||
| b9ee31b64c | |||
| bf32a55e4b | |||
| acff88475b |
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
/out/
|
||||
@@ -1,11 +1,11 @@
|
||||
<component name="ArtifactManager">
|
||||
<artifact type="jar" name="TCellSim:jar">
|
||||
<output-path>$PROJECT_DIR$/out/artifacts/TCellSim_jar</output-path>
|
||||
<root id="archive" name="TCellSim.jar">
|
||||
<artifact type="jar" build-on-make="true" name="BiGpairSEQ_Sim:jar">
|
||||
<output-path>$PROJECT_DIR$/out/artifacts/BiGpairSEQ_Sim_jar</output-path>
|
||||
<root id="archive" name="BiGpairSEQ_Sim.jar">
|
||||
<element id="directory" name="META-INF">
|
||||
<element id="file-copy" path="$PROJECT_DIR$/src/main/java/META-INF/MANIFEST.MF" />
|
||||
</element>
|
||||
<element id="module-output" name="TCellSim" />
|
||||
<element id="module-output" name="BigPairSEQ" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-core/1.5.1/jgrapht-core-1.5.1.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.13/jheaps-0.13.jar" path-in-jar="/" />
|
||||
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/commons-cli/commons-cli/1.5.0/commons-cli-1.5.0.jar" path-in-jar="/" />
|
||||
2
.idea/compiler.xml
generated
2
.idea/compiler.xml
generated
@@ -6,7 +6,7 @@
|
||||
<sourceOutputDir name="target/generated-sources/annotations" />
|
||||
<sourceTestOutputDir name="target/generated-test-sources/test-annotations" />
|
||||
<outputRelativeToContentRoot value="true" />
|
||||
<module name="TCellSim" />
|
||||
<module name="BigPairSEQ" />
|
||||
</profile>
|
||||
</annotationProcessing>
|
||||
</component>
|
||||
|
||||
15
.idea/libraries/jgrapht_io.xml
generated
Normal file
15
.idea/libraries/jgrapht_io.xml
generated
Normal file
@@ -0,0 +1,15 @@
|
||||
<component name="libraryTable">
|
||||
<library name="jgrapht.io" type="repository">
|
||||
<properties maven-id="org.jgrapht:jgrapht-io:1.5.1" />
|
||||
<CLASSES>
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-io/1.5.1/jgrapht-io-1.5.1.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-core/1.5.1/jgrapht-core-1.5.1.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.13/jheaps-0.13.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/antlr/antlr4-runtime/4.8-1/antlr4-runtime-4.8-1.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/apache/commons/commons-text/1.8/commons-text-1.8.jar!/" />
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/apache/commons/commons-lang3/3.9/commons-lang3-3.9.jar!/" />
|
||||
</CLASSES>
|
||||
<JAVADOC />
|
||||
<SOURCES />
|
||||
</library>
|
||||
</component>
|
||||
10
.idea/libraries/jheaps.xml
generated
Normal file
10
.idea/libraries/jheaps.xml
generated
Normal file
@@ -0,0 +1,10 @@
|
||||
<component name="libraryTable">
|
||||
<library name="jheaps" type="repository">
|
||||
<properties maven-id="org.jheaps:jheaps:0.14" />
|
||||
<CLASSES>
|
||||
<root url="jar://$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.14/jheaps-0.14.jar!/" />
|
||||
</CLASSES>
|
||||
<JAVADOC />
|
||||
<SOURCES />
|
||||
</library>
|
||||
</component>
|
||||
Binary file not shown.
@@ -1,4 +0,0 @@
|
||||
Executable .jar file with interactive, command line UI
|
||||
Usage: java -jar TCellSim.jar
|
||||
|
||||
Requires Java11 or higher (Openjdk-17 recommended)
|
||||
317
readme.md
Normal file
317
readme.md
Normal file
@@ -0,0 +1,317 @@
|
||||
# BiGpairSEQ SIMULATOR
|
||||
|
||||
|
||||
## ABOUT
|
||||
|
||||
This program simulates BiGpairSEQ (Bipartite Graph pairSEQ), a graph theory-based adaptation
|
||||
of the pairSEQ algorithm (Howie, et al. 2015) for pairing T cell receptor sequences.
|
||||
|
||||
## THEORY
|
||||
|
||||
Unlike pairSEQ, which calculates p-values for every TCR alpha/beta overlap and compares
|
||||
against a null distribution, BiGpairSEQ does not do any statistical calculations
|
||||
directly.
|
||||
|
||||
BiGpairSEQ creates a [weighted bipartite graph](https://en.wikipedia.org/wiki/Bipartite_graph) representing the sample plate.
|
||||
The distinct TCRA and TCRB sequences form the two sets of vertices. Every TCRA/TCRB pair that share a well
|
||||
are connected by an edge, with the edge weight set to the number of wells in which both sequences appear.
|
||||
(Sequences present in *all* wells are filtered out prior to creating the graph, as there is no signal in their occupancy pattern.)
|
||||
The problem of pairing TCRA/TCRB sequences thus reduces to the "assignment problem" of finding a maximum weight
|
||||
matching on a bipartite graph--the subset of vertex-disjoint edges whose weights sum to the maximum possible value.
|
||||
|
||||
This is a well-studied combinatorial optimization problem, with many known solutions.
|
||||
The most efficient algorithm known to the author for maximum weight matching of a bipartite graph with strictly integral weights
|
||||
is from Duan and Su (2012). For a graph with m edges, n vertices per side, and maximum integer edge weight N,
|
||||
their algorithm runs in **O(m sqrt(n) log(N))** time. As the graph representation of a pairSEQ experiment is
|
||||
bipartite with integer weights, this algorithm is ideal for BiGpairSEQ.
|
||||
|
||||
Unfortunately, it's a fairly new algorithm, and not yet implemented by the graph theory library used in this simulator.
|
||||
So this program instead uses the Fibonacci heap-based algorithm of Fredman and Tarjan (1987), which has a worst-case
|
||||
runtime of **O(n (n log(n) + m))**. The algorithm is implemented as described in Melhorn and Näher (1999).
|
||||
|
||||
## USAGE
|
||||
|
||||
### RUNNING THE PROGRAM
|
||||
|
||||
[Download the current version of BiGpairSEQ_Sim.](https://gitea.ejsf.synology.me/efischer/BiGpairSEQ/releases)
|
||||
|
||||
BiGpairSEQ_Sim is an executable .jar file. Requires Java 14 or higher. [OpenJDK 17](https://jdk.java.net/17/)
|
||||
recommended.
|
||||
|
||||
Run with the command:
|
||||
|
||||
`java -jar BiGpairSEQ_Sim.jar`
|
||||
|
||||
Processing sample plates with tens of thousands of sequences may require large amounts
|
||||
of RAM. It is often desirable to increase the JVM maximum heap allocation with the -Xmx flag.
|
||||
For example, to run the program with 32 gigabytes of memory, use the command:
|
||||
|
||||
`java -Xmx32G -jar BiGpairSEQ_Sim.jar`
|
||||
|
||||
Once running, BiGpairSEQ_Sim has an interactive, menu-driven CLI for generating files and simulating TCR pairing. The
|
||||
main menu looks like this:
|
||||
|
||||
```
|
||||
--------BiGPairSEQ SIMULATOR--------
|
||||
ALPHA/BETA T CELL RECEPTOR MATCHING
|
||||
USING WEIGHTED BIPARTITE GRAPHS
|
||||
------------------------------------
|
||||
Please select an option:
|
||||
1) Generate a population of distinct cells
|
||||
2) Generate a sample plate of T cells
|
||||
3) Generate CDR3 alpha/beta occupancy data and overlap graph
|
||||
4) Simulate bipartite graph CDR3 alpha/beta matching (BiGpairSEQ)
|
||||
8) Options
|
||||
9) About/Acknowledgments
|
||||
0) Exit
|
||||
```
|
||||
|
||||
By default, the Options menu looks like this:
|
||||
```
|
||||
--------------OPTIONS---------------
|
||||
1) Turn on cell sample file caching
|
||||
2) Turn on plate file caching
|
||||
3) Turn on graph/data file caching
|
||||
4) Turn off serialized binary graph output
|
||||
5) Turn on GraphML graph output
|
||||
6) Maximum weight matching algorithm options
|
||||
0) Return to main menu
|
||||
```
|
||||
|
||||
### INPUT/OUTPUT
|
||||
|
||||
To run the simulation, the program reads and writes 4 kinds of files:
|
||||
* Cell Sample files in CSV format
|
||||
* Sample Plate files in CSV format
|
||||
* Graph/Data files in binary object serialization format
|
||||
* Matching Results files in CSV format
|
||||
|
||||
These files are often generated in sequence. When entering filenames, it is not necessary to include the file extension
|
||||
(.csv or .ser). When reading or writing files, the program will automatically add the correct extension to any filename
|
||||
without one.
|
||||
|
||||
To save file I/O time, the most recent instance of each of these four
|
||||
files either generated or read from disk can be cached in program memory. When caching is active, subsequent uses of the
|
||||
same data file won't need to be read in again until another file of that type is used or generated,
|
||||
or caching is turned off for that file type. The program checks whether it needs to update its cached data by comparing
|
||||
filenames as entered by the user. On encountering a new filename, the program flushes its cache and reads in the new file.
|
||||
|
||||
(Note that cached Graph/Data files must be transformed back into their original state after a matching experiment, which
|
||||
may take some time. Whether file I/O or graph transformation takes longer for graph/data files is likely to be
|
||||
device-specific.)
|
||||
|
||||
The program's caching behavior can be controlled in the Options menu. By default, all caching is OFF.
|
||||
|
||||
The program can optionally output Graph/Data files in .GraphML format (.graphml) for data portability. This can be
|
||||
turned on in the Options menu. By default, GraphML output is OFF.
|
||||
|
||||
---
|
||||
#### Cell Sample Files
|
||||
Cell Sample files consist of any number of distinct "T cells." Every cell contains
|
||||
four sequences: Alpha CDR3, Beta CDR3, Alpha CDR1, Beta CDR1. The sequences are represented by
|
||||
random integers. CDR3 Alpha and Beta sequences are all unique within a given Cell Sample file. CDR1 Alpha and Beta sequences
|
||||
are not necessarily unique; the relative diversity can be set when making the file.
|
||||
|
||||
(Note: though cells still have CDR1 sequences, matching of CDR1s is currently awaiting re-implementation.)
|
||||
|
||||
Options when making a Cell Sample file:
|
||||
* Number of T cells to generate
|
||||
* Factor by which CDR3s are more diverse than CDR1s
|
||||
|
||||
Files are in CSV format. Rows are distinct T cells, columns are sequences within the cells.
|
||||
Comments are preceded by `#`
|
||||
|
||||
Structure:
|
||||
|
||||
# Sample contains 1 unique CDR1 for every 4 unique CDR3s.
|
||||
| Alpha CDR3 | Beta CDR3 | Alpha CDR1 | Beta CDR1 |
|
||||
|---|---|---|---|
|
||||
|unique number|unique number|number|number|
|
||||
|
||||
---
|
||||
|
||||
#### Sample Plate Files
|
||||
Sample Plate files consist of any number of "wells" containing any number of T cells (as
|
||||
described above). The wells are filled randomly from a Cell Sample file, according to a selected
|
||||
frequency distribution. Additionally, every individual sequence within each cell may, with some
|
||||
given dropout probability, be omitted from the file; this simulates the effect of amplification errors
|
||||
prior to sequencing. Plates can also be partitioned into any number of sections, each of which can have a
|
||||
different concentration of T cells per well.
|
||||
|
||||
Options when making a Sample Plate file:
|
||||
* Cell Sample file to use
|
||||
* Statistical distribution to apply to Cell Sample file
|
||||
* Poisson
|
||||
* Gaussian
|
||||
* Standard deviation size
|
||||
* Exponential
|
||||
* Lambda value
|
||||
* *(Based on the slope of the graph in Figure 4C of the pairSEQ paper, the distribution of the original experiment was approximately exponential with a lambda ~0.6. (Howie, et al. 2015))*
|
||||
* Total number of wells on the plate
|
||||
* Well populations random or fixed
|
||||
* If random, minimum and maximum population sizes
|
||||
* If fixed
|
||||
* Number of sections on plate
|
||||
* Number of T cells per well
|
||||
* per section, if more than one section
|
||||
* Dropout rate
|
||||
|
||||
Files are in CSV format. There are no header labels. Every row represents a well.
|
||||
Every value represents an individual cell, containing four sequences, depicted as an array string:
|
||||
`[CDR3A, CDR3B, CDR1A, CDR1B]`. So a representative cell might look like this:
|
||||
|
||||
`[525902, 791533, -1, 866282]`
|
||||
|
||||
Notice that the CDR1 Alpha is missing in the cell above--sequence dropout from simulated amplification error.
|
||||
Dropout sequences are replaced with the value `-1`. Comments are preceded by `#`
|
||||
|
||||
Structure:
|
||||
|
||||
```
|
||||
# Cell source file name:
|
||||
# Each row represents one well on the plate
|
||||
# Plate size:
|
||||
# Concentrations:
|
||||
# Lambda -or- StdDev:
|
||||
```
|
||||
| Well 1, cell 1 | Well 1, cell 2 | Well 1, cell 3| ... |
|
||||
|---|---|---|---|
|
||||
| **Well 2, cell 1** | **Well 2, cell 2** | **Well 2, cell 3**| **...** |
|
||||
| **Well 3, cell 1** | **Well 3, cell 2** | **Well 3, cell 3**| **...** |
|
||||
| **...** | **...** | **...** | **...** |
|
||||
|
||||
---
|
||||
|
||||
#### Graph/Data Files
|
||||
Graph/Data files are serialized binaries of a Java object containing the weigthed bipartite graph representation of a
|
||||
Sample Plate, along with the necessary metadata for matching and results output. Making them requires a Cell Sample file
|
||||
(to construct a list of correct sequence pairs for checking the accuracy of BiGpairSEQ simulations) and a
|
||||
Sample Plate file (to construct the associated occupancy graph).
|
||||
|
||||
These files can be several gigabytes in size. Writing them to a file lets us generate a graph and its metadata once,
|
||||
then use it for multiple different BiGpairSEQ simulations.
|
||||
|
||||
Options for creating a Graph/Data file:
|
||||
* The Cell Sample file to use
|
||||
* The Sample Plate file to use. (This must have been generated from the selected Cell Sample file.)
|
||||
|
||||
These files do not have a human-readable structure, and are not portable to other programs.
|
||||
|
||||
(For portability to other software, turn on GraphML output in the Options menu. This will produce a .graphml file
|
||||
for the weighted graph, with vertex attributes sequence, type, and occupancy data.)
|
||||
|
||||
---
|
||||
|
||||
#### Matching Results Files
|
||||
Matching results files consist of the results of a BiGpairSEQ matching simulation. Making them requires a serialized
|
||||
binary Graph/Data file (.ser). (Because .graphML files are larger than .ser files, BiGpairSEQ_Sim supports .graphML
|
||||
output only. Graph/data input must use a serialized binary.)
|
||||
|
||||
Matching results files are in CSV format. Rows are sequence pairings with extra relevant data. Columns are pairing-specific details.
|
||||
Metadata about the matching simulation is included as comments. Comments are preceded by `#`.
|
||||
|
||||
Options when running a BiGpairSEQ simulation of CDR3 alpha/beta matching:
|
||||
* The minimum number of alpha/beta overlap wells to attempt to match
|
||||
* (must be >= 1)
|
||||
* The maximum number of alpha/beta overlap wells to attempt to match
|
||||
* (must be <= the number of wells on the plate - 1)
|
||||
* The maximum difference in alpha/beta occupancy to attempt to match
|
||||
* (Optional. To skip using this filter, enter a value >= the number of wells on the plate)
|
||||
* The minimum overlap percentage--the percentage of a sequence's occupied wells shared by another sequence--to attempt to match. Given as value in range 0 - 100.
|
||||
* (Optional. To skip using this filter, enter 0)
|
||||
|
||||
Example output:
|
||||
|
||||
```
|
||||
# Source Sample Plate file: 4MilCellsPlate.csv
|
||||
# Source Graph and Data file: 4MilCellsPlateGraph.ser
|
||||
# T cell counts in sample plate wells: 30000
|
||||
# Total alphas found: 11813
|
||||
# Total betas found: 11808
|
||||
# High overlap threshold: 94
|
||||
# Low overlap threshold: 3
|
||||
# Minimum overlap percent: 0
|
||||
# Maximum occupancy difference: 96
|
||||
# Pairing attempt rate: 0.438
|
||||
# Correct pairings: 5151
|
||||
# Incorrect pairings: 18
|
||||
# Pairing error rate: 0.00348
|
||||
# Simulation time: 862 seconds
|
||||
```
|
||||
|
||||
| Alpha | Alpha well count | Beta | Beta well count | Overlap count | Matched Correctly? | P-value |
|
||||
|---|---|---|---|---|---|---|
|
||||
|5242972|17|1571520|18|17|true|1.41E-18|
|
||||
|5161027|18|2072219|18|18|true|7.31E-20|
|
||||
|4145198|33|1064455|30|29|true|2.65E-21|
|
||||
|7700582|18|112748|18|18|true|7.31E-20|
|
||||
|...|...|...|...|...|...|...|
|
||||
|
||||
---
|
||||
|
||||
**NOTE: The p-values in the output are not used for matching**—they aren't part of the BiGpairSEQ algorithm at all.
|
||||
P-values are calculated *after* BiGpairSEQ matching is completed, for purposes of comparison only,
|
||||
using the (2021 corrected) formula from the original pairSEQ paper. (Howie, et al. 2015)
|
||||
|
||||
### PERFORMANCE
|
||||
Performance details of the example excerpted above:
|
||||
|
||||
On a home computer with a Ryzen 5600X CPU, 64GB of 3200MHz DDR4 RAM (half of which was allocated to the Java Virtual Machine), and a PCIe 3.0 SSD, running Linux Mint 20.3 Edge (5.13 kernel),
|
||||
the author ran a BiGpairSEQ simulation of a 96-well sample plate with 30,000 T cells/well comprising ~11,800 alphas and betas,
|
||||
taken from a sample of 4,000,000 distinct cells with an exponential frequency distribution.
|
||||
|
||||
With min/max occupancy threshold of 3 and 94 wells for matching, and no other pre-filtering, BiGpairSEQ identified 5,151
|
||||
correct pairings and 18 incorrect pairings, for an accuracy of 99.652%.
|
||||
|
||||
The simulation time was 14'22". If intermediate results were held in memory, this would be equivalent to the total elapsed time.
|
||||
|
||||
Since this implementation of BiGpairSEQ writes intermediate results to disk (to improve the efficiency of *repeated* simulations
|
||||
with different filtering options), the actual elapsed time was greater. File I/O time was not measured, but took
|
||||
slightly less time than the simulation itself. Real elapsed time from start to finish was under 30 minutes.
|
||||
|
||||
## TODO
|
||||
|
||||
* ~~Try invoking GC at end of workloads to reduce paging to disk~~ DONE
|
||||
* ~~Hold graph data in memory until another graph is read-in? ABANDONED UNABANDONED~~ DONE
|
||||
* ~~*No, this won't work, because BiGpairSEQ simulations alter the underlying graph based on filtering constraints. Changes would cascade with multiple experiments.*~~
|
||||
* Might have figured out a way to do it, by taking edges out and then putting them back into the graph. This may actually be possible.
|
||||
* It is possible, though the modifications to the graph incur their own performance penalties. Need testing to see which option is best.
|
||||
* ~~Test whether pairing heap (currently used) or Fibonacci heap is more efficient for priority queue in current matching algorithm~~ DONE
|
||||
* ~~in theory Fibonacci heap should be more efficient, but complexity overhead may eliminate theoretical advantage~~
|
||||
* ~~Add controllable heap-type parameter?~~
|
||||
* Parameter implemented. Fibonacci heap the current default.
|
||||
* ~~Implement sample plates with random numbers of T cells per well.~~ DONE
|
||||
* Possible BiGpairSEQ advantage over pairSEQ: BiGpairSEQ is resilient to variations in well population sizes on a sample plate; pairSEQ is not.
|
||||
* preliminary data suggests that BiGpairSEQ behaves roughly as though the whole plate had whatever the *average* well concentration is, but that's still speculative.
|
||||
* See if there's a reasonable way to reformat Sample Plate files so that wells are columns instead of rows.
|
||||
* ~~Problem is variable number of cells in a well~~
|
||||
* ~~Apache Commons CSV library writes entries a row at a time~~
|
||||
* _Got this working, but at the cost of a profoundly strange bug in graph occupancy filtering. Have reverted the repo until I can figure out what caused that. Given how easily Thingiverse transposes CSV matrices in R, might not even be worth fixing.
|
||||
* ~~Enable GraphML output in addition to serialized object binaries, for data portability~~ DONE
|
||||
* ~~Custom vertex type with attribute for sequence occupancy?~~ ABANDONED
|
||||
* Have a branch where this is implemented, but there's a bug that broke matching. Don't currently have time to fix.
|
||||
* Re-implement command line arguments, to enable scripting and statistical simulation studies
|
||||
* Re-implement CDR1 matching method
|
||||
* Implement Duan and Su's maximum weight matching algorithm
|
||||
* Add controllable algorithm-type parameter?
|
||||
* This would be fun and valuable, but probably take more time than I have for a hobby project.
|
||||
|
||||
|
||||
## CITATIONS
|
||||
* Howie, B., Sherwood, A. M., et al. ["High-throughput pairing of T cell receptor alpha and beta sequences."](https://pubmed.ncbi.nlm.nih.gov/26290413/) Sci. Transl. Med. 7, 301ra131 (2015)
|
||||
* Duan, R., Su H. ["A Scaling Algorithm for Maximum Weight Matching in Bipartite Graphs."](https://web.eecs.umich.edu/~pettie/matching/Duan-Su-scaling-bipartite-matching.pdf) Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, p. 1413-1424. (2012)
|
||||
* Melhorn, K., Näher, St. [The LEDA Platform of Combinatorial and Geometric Computing.](https://people.mpi-inf.mpg.de/~mehlhorn/LEDAbook.html) Cambridge University Press. Chapter 7, Graph Algorithms; p. 132-162 (1999)
|
||||
* Fredman, M., Tarjan, R. ["Fibonacci heaps and their uses in improved network optimization algorithms."](https://www.cl.cam.ac.uk/teaching/1011/AlgorithII/1987-FredmanTar-fibonacci.pdf) J. ACM, 34(3):596–615 (1987))
|
||||
|
||||
## EXTERNAL LIBRARIES USED
|
||||
* [JGraphT](https://jgrapht.org) -- Graph theory data structures and algorithms
|
||||
* [JHeaps](https://www.jheaps.org) -- For pairing heap priority queue used in maximum weight matching algorithm
|
||||
* [Apache Commons CSV](https://commons.apache.org/proper/commons-csv/) -- For CSV file output
|
||||
* [Apache Commons CLI](https://commons.apache.org/proper/commons-cli/) -- To enable command line arguments for scripting. (**Awaiting re-implementation**.)
|
||||
|
||||
## ACKNOWLEDGEMENTS
|
||||
BiGpairSEQ was conceived in collaboration with Dr. Alice MacQueen, who brought the original
|
||||
pairSEQ paper to the author's attention and explained all the biology terms he didn't know.
|
||||
|
||||
## AUTHOR
|
||||
BiGpairSEQ algorithm and simulation by Eugene Fischer, 2021. UI improvements and documentation, 2022.
|
||||
176
src/main/java/BiGpairSEQ.java
Normal file
176
src/main/java/BiGpairSEQ.java
Normal file
@@ -0,0 +1,176 @@
|
||||
import java.util.Random;
|
||||
|
||||
//main class. For choosing interface type and holding settings
|
||||
public class BiGpairSEQ {
|
||||
|
||||
private static final Random rand = new Random();
|
||||
private static CellSample cellSampleInMemory = null;
|
||||
private static String cellFilename = null;
|
||||
private static Plate plateInMemory = null;
|
||||
private static String plateFilename = null;
|
||||
private static GraphWithMapData graphInMemory = null;
|
||||
private static String graphFilename = null;
|
||||
private static boolean cacheCells = false;
|
||||
private static boolean cachePlate = false;
|
||||
private static boolean cacheGraph = false;
|
||||
private static String priorityQueueHeapType = "FIBONACCI";
|
||||
private static boolean outputBinary = true;
|
||||
private static boolean outputGraphML = false;
|
||||
|
||||
public static void main(String[] args) {
|
||||
if (args.length == 0) {
|
||||
InteractiveInterface.startInteractive();
|
||||
}
|
||||
else {
|
||||
//This will be uncommented when command line arguments are re-implemented.
|
||||
//CommandLineInterface.startCLI(args);
|
||||
System.out.println("Command line arguments are still being re-implemented.");
|
||||
}
|
||||
}
|
||||
|
||||
public static Random getRand() {
|
||||
return rand;
|
||||
}
|
||||
|
||||
public static CellSample getCellSampleInMemory() {
|
||||
return cellSampleInMemory;
|
||||
}
|
||||
|
||||
public static void setCellSampleInMemory(CellSample cellSample, String filename) {
|
||||
if(cellSampleInMemory != null) {
|
||||
clearCellSampleInMemory();
|
||||
}
|
||||
cellSampleInMemory = cellSample;
|
||||
cellFilename = filename;
|
||||
System.out.println("Cell sample file " + filename + " cached.");
|
||||
}
|
||||
|
||||
public static void clearCellSampleInMemory() {
|
||||
cellSampleInMemory = null;
|
||||
cellFilename = null;
|
||||
System.gc();
|
||||
System.out.println("Cell sample file cache cleared.");
|
||||
|
||||
}
|
||||
|
||||
public static String getCellFilename() {
|
||||
return cellFilename;
|
||||
}
|
||||
|
||||
public static Plate getPlateInMemory() {
|
||||
return plateInMemory;
|
||||
}
|
||||
|
||||
public static void setPlateInMemory(Plate plate, String filename) {
|
||||
if(plateInMemory != null) {
|
||||
clearPlateInMemory();
|
||||
}
|
||||
plateInMemory = plate;
|
||||
plateFilename = filename;
|
||||
System.out.println("Sample plate file " + filename + " cached.");
|
||||
}
|
||||
|
||||
public static void clearPlateInMemory() {
|
||||
plateInMemory = null;
|
||||
plateFilename = null;
|
||||
System.gc();
|
||||
System.out.println("Sample plate file cache cleared.");
|
||||
|
||||
}
|
||||
|
||||
public static String getPlateFilename() {
|
||||
return plateFilename;
|
||||
}
|
||||
|
||||
|
||||
public static GraphWithMapData getGraphInMemory() {return graphInMemory;
|
||||
}
|
||||
|
||||
public static void setGraphInMemory(GraphWithMapData g, String filename) {
|
||||
if (graphInMemory != null) {
|
||||
clearGraphInMemory();
|
||||
}
|
||||
graphInMemory = g;
|
||||
graphFilename = filename;
|
||||
System.out.println("Graph and data file " + filename + " cached.");
|
||||
}
|
||||
|
||||
public static void clearGraphInMemory() {
|
||||
graphInMemory = null;
|
||||
graphFilename = null;
|
||||
System.gc();
|
||||
System.out.println("Graph and data file cache cleared.");
|
||||
}
|
||||
|
||||
public static String getGraphFilename() {
|
||||
return graphFilename;
|
||||
}
|
||||
|
||||
|
||||
public static boolean cacheCells() {
|
||||
return cacheCells;
|
||||
}
|
||||
|
||||
public static void setCacheCells(boolean cacheCells) {
|
||||
//if not caching, clear the memory
|
||||
if(!cacheCells){
|
||||
BiGpairSEQ.clearCellSampleInMemory();
|
||||
System.out.println("Cell sample file caching: OFF.");
|
||||
}
|
||||
else {
|
||||
System.out.println("Cell sample file caching: ON.");
|
||||
}
|
||||
BiGpairSEQ.cacheCells = cacheCells;
|
||||
}
|
||||
|
||||
public static boolean cachePlate() {
|
||||
return cachePlate;
|
||||
}
|
||||
|
||||
public static void setCachePlate(boolean cachePlate) {
|
||||
//if not caching, clear the memory
|
||||
if(!cachePlate) {
|
||||
BiGpairSEQ.clearPlateInMemory();
|
||||
System.out.println("Sample plate file caching: OFF.");
|
||||
}
|
||||
else {
|
||||
System.out.println("Sample plate file caching: ON.");
|
||||
}
|
||||
BiGpairSEQ.cachePlate = cachePlate;
|
||||
}
|
||||
|
||||
public static boolean cacheGraph() {
|
||||
return cacheGraph;
|
||||
}
|
||||
|
||||
public static void setCacheGraph(boolean cacheGraph) {
|
||||
//if not caching, clear the memory
|
||||
if(!cacheGraph) {
|
||||
BiGpairSEQ.clearGraphInMemory();
|
||||
System.out.println("Graph/data file caching: OFF.");
|
||||
}
|
||||
else {
|
||||
System.out.println("Graph/data file caching: ON.");
|
||||
}
|
||||
BiGpairSEQ.cacheGraph = cacheGraph;
|
||||
}
|
||||
|
||||
public static String getPriorityQueueHeapType() {
|
||||
return priorityQueueHeapType;
|
||||
}
|
||||
|
||||
public static void setPairingHeap() {
|
||||
priorityQueueHeapType = "PAIRING";
|
||||
}
|
||||
|
||||
public static void setFibonacciHeap() {
|
||||
priorityQueueHeapType = "FIBONACCI";
|
||||
}
|
||||
|
||||
public static boolean outputBinary() {return outputBinary;}
|
||||
public static void setOutputBinary(boolean b) {outputBinary = b;}
|
||||
|
||||
public static boolean outputGraphML() {return outputGraphML;}
|
||||
public static void setOutputGraphML(boolean b) {outputGraphML = b;}
|
||||
|
||||
}
|
||||
@@ -13,6 +13,7 @@ public class CellFileReader {
|
||||
|
||||
private String filename;
|
||||
private List<Integer[]> distinctCells = new ArrayList<>();
|
||||
private Integer cdr1Freq;
|
||||
|
||||
public CellFileReader(String filename) {
|
||||
if(!filename.matches(".*\\.csv")){
|
||||
@@ -38,19 +39,37 @@ public class CellFileReader {
|
||||
cell[3] = Integer.valueOf(record.get("Beta CDR1"));
|
||||
distinctCells.add(cell);
|
||||
}
|
||||
|
||||
|
||||
} catch(IOException ex){
|
||||
System.out.println("cell file " + filename + " not found.");
|
||||
System.err.println(ex);
|
||||
}
|
||||
|
||||
//get CDR1 frequency
|
||||
ArrayList<Integer> cdr1Alphas = new ArrayList<>();
|
||||
for (Integer[] cell : distinctCells) {
|
||||
cdr1Alphas.add(cell[3]);
|
||||
}
|
||||
double count = cdr1Alphas.stream().distinct().count();
|
||||
count = Math.ceil(distinctCells.size() / count);
|
||||
cdr1Freq = (int) count;
|
||||
|
||||
}
|
||||
|
||||
public CellSample getCellSample() {
|
||||
return new CellSample(distinctCells, cdr1Freq);
|
||||
}
|
||||
|
||||
public String getFilename() { return filename;}
|
||||
|
||||
public List<Integer[]> getCells(){
|
||||
//Refactor everything that uses this to have access to a Cell Sample and get the cells there instead.
|
||||
public List<Integer[]> getListOfDistinctCellsDEPRECATED(){
|
||||
return distinctCells;
|
||||
}
|
||||
|
||||
public Integer getCellCount() {
|
||||
public Integer getCellCountDEPRECATED() {
|
||||
//Refactor everything that uses this to have access to a Cell Sample and get the count there instead.
|
||||
return distinctCells.size();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,10 +1,37 @@
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
import java.util.stream.IntStream;
|
||||
|
||||
public class CellSample {
|
||||
|
||||
private List<Integer[]> cells;
|
||||
private Integer cdr1Freq;
|
||||
|
||||
public CellSample(Integer numDistinctCells, Integer cdr1Freq){
|
||||
this.cdr1Freq = cdr1Freq;
|
||||
List<Integer> numbersCDR3 = new ArrayList<>();
|
||||
List<Integer> numbersCDR1 = new ArrayList<>();
|
||||
Integer numDistCDR3s = 2 * numDistinctCells + 1;
|
||||
IntStream.range(1, numDistCDR3s + 1).forEach(i -> numbersCDR3.add(i));
|
||||
IntStream.range(numDistCDR3s + 1, numDistCDR3s + 1 + (numDistCDR3s / cdr1Freq) + 1).forEach(i -> numbersCDR1.add(i));
|
||||
Collections.shuffle(numbersCDR3);
|
||||
Collections.shuffle(numbersCDR1);
|
||||
|
||||
//Each cell represented by 4 values
|
||||
//two CDR3s, and two CDR1s. First two values are CDR3s (alpha, beta), second two are CDR1s (alpha, beta)
|
||||
List<Integer[]> distinctCells = new ArrayList<>();
|
||||
for(int i = 0; i < numbersCDR3.size() - 1; i = i + 2){
|
||||
Integer tmpCDR3a = numbersCDR3.get(i);
|
||||
Integer tmpCDR3b = numbersCDR3.get(i+1);
|
||||
Integer tmpCDR1a = numbersCDR1.get(i % numbersCDR1.size());
|
||||
Integer tmpCDR1b = numbersCDR1.get((i+1) % numbersCDR1.size());
|
||||
Integer[] tmp = {tmpCDR3a, tmpCDR3b, tmpCDR1a, tmpCDR1b};
|
||||
distinctCells.add(tmp);
|
||||
}
|
||||
this.cells = distinctCells;
|
||||
}
|
||||
|
||||
public CellSample(List<Integer[]> cells, Integer cdr1Freq){
|
||||
this.cells = cells;
|
||||
this.cdr1Freq = cdr1Freq;
|
||||
@@ -18,7 +45,7 @@ public class CellSample {
|
||||
return cdr1Freq;
|
||||
}
|
||||
|
||||
public Integer population(){
|
||||
public Integer getCellCount(){
|
||||
return cells.size();
|
||||
}
|
||||
|
||||
|
||||
328
src/main/java/CommandLineInterface.java
Normal file
328
src/main/java/CommandLineInterface.java
Normal file
@@ -0,0 +1,328 @@
|
||||
import org.apache.commons.cli.*;
|
||||
|
||||
/*
|
||||
* Class for parsing options passed to program from command line
|
||||
*
|
||||
* Top-level flags:
|
||||
* cells : to make a cell sample file
|
||||
* plate : to make a sample plate file
|
||||
* graph : to make a graph and data file
|
||||
* match : to do a cdr3 matching (WITH OR WITHOUT MAKING A RESULTS FILE. May just want to print summary for piping.)
|
||||
*
|
||||
* Cell flags:
|
||||
* count : number of cells to generate
|
||||
* diversity factor : factor by which CDR3s are more diverse than CDR1s
|
||||
* output : name of the output file
|
||||
*
|
||||
* Plate flags:
|
||||
* cellfile : name of the cell sample file to use as input
|
||||
* wells : the number of wells on the plate
|
||||
* dist : the statistical distribution to use
|
||||
* (if exponential) lambda : the lambda value of the exponential distribution
|
||||
* (if gaussian) stddev : the standard deviation of the gaussian distribution
|
||||
* rand : randomize well populations, take a minimum argument and a maximum argument
|
||||
* populations : number of t cells per well per section (number of arguments determines number of sections)
|
||||
* dropout : plate dropout rate, double from 0.0 to 1.0
|
||||
* output : name of the output file
|
||||
*
|
||||
* Graph flags:
|
||||
* cellfile : name of the cell sample file to use as input
|
||||
* platefile : name of the sample plate file to use as input
|
||||
* output : name of the output file
|
||||
*
|
||||
* Match flags:
|
||||
* graphFile : name of graph and data file to use as input
|
||||
* min : minimum number of overlap wells to attempt a matching
|
||||
* max : the maximum number of overlap wells to attempt a matching
|
||||
* maxdiff : (optional) the maximum difference in occupancy to attempt a matching
|
||||
* minpercent : (optional) the minimum percent overlap to attempt a matching.
|
||||
* writefile : (optional) the filename to write results to
|
||||
* output : the values to print to System.out for piping
|
||||
*
|
||||
*/
|
||||
public class CommandLineInterface {
|
||||
|
||||
public static void startCLI(String[] args) {
|
||||
//These command line options are a big mess
|
||||
//Really, I don't think command line tools are expected to work in this many different modes
|
||||
//making cells, making plates, and matching are the sort of thing that UNIX philosophy would say
|
||||
//should be three separate programs.
|
||||
//There might be a way to do it with option parameters?
|
||||
|
||||
//main options set
|
||||
Options mainOptions = new Options();
|
||||
Option makeCells = Option.builder("cells")
|
||||
.longOpt("make-cells")
|
||||
.desc("Makes a file of distinct cells")
|
||||
.build();
|
||||
Option makePlate = Option.builder("plates")
|
||||
.longOpt("make-plates")
|
||||
.desc("Makes a sample plate file")
|
||||
.build();
|
||||
Option makeGraph = Option.builder("graph")
|
||||
.longOpt("make-graph")
|
||||
.desc("Makes a graph and data file")
|
||||
.build();
|
||||
Option matchCDR3 = Option.builder("match")
|
||||
.longOpt("match-cdr3")
|
||||
.desc("Match CDR3s. Requires a cell sample file and any number of plate files.")
|
||||
.build();
|
||||
OptionGroup mainGroup = new OptionGroup();
|
||||
mainGroup.addOption(makeCells);
|
||||
mainGroup.addOption(makePlate);
|
||||
mainGroup.addOption(makeGraph);
|
||||
mainGroup.addOption(matchCDR3);
|
||||
mainGroup.setRequired(true);
|
||||
mainOptions.addOptionGroup(mainGroup);
|
||||
|
||||
//Reuse clones of this for other options groups, rather than making it lots of times
|
||||
Option outputFile = Option.builder("o")
|
||||
.longOpt("output-file")
|
||||
.hasArg()
|
||||
.argName("filename")
|
||||
.desc("Name of output file")
|
||||
.build();
|
||||
mainOptions.addOption(outputFile);
|
||||
|
||||
//Options cellOptions = new Options();
|
||||
Option numCells = Option.builder("nc")
|
||||
.longOpt("num-cells")
|
||||
.desc("The number of distinct cells to generate")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.build();
|
||||
mainOptions.addOption(numCells);
|
||||
Option cdr1Freq = Option.builder("d")
|
||||
.longOpt("peptide-diversity-factor")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.desc("Number of distinct CDR3s for every CDR1")
|
||||
.build();
|
||||
mainOptions.addOption(cdr1Freq);
|
||||
//Option cellOutput = (Option) outputFile.clone();
|
||||
//cellOutput.setRequired(true);
|
||||
//mainOptions.addOption(cellOutput);
|
||||
|
||||
//Options plateOptions = new Options();
|
||||
Option inputCells = Option.builder("c")
|
||||
.longOpt("cell-file")
|
||||
.hasArg()
|
||||
.argName("file")
|
||||
.desc("The cell sample file used for filling wells")
|
||||
.build();
|
||||
mainOptions.addOption(inputCells);
|
||||
Option numWells = Option.builder("w")
|
||||
.longOpt("num-wells")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.desc("The number of wells on each plate")
|
||||
.build();
|
||||
mainOptions.addOption(numWells);
|
||||
Option numPlates = Option.builder("np")
|
||||
.longOpt("num-plates")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.desc("The number of plate files to output")
|
||||
.build();
|
||||
mainOptions.addOption(numPlates);
|
||||
//Option plateOutput = (Option) outputFile.clone();
|
||||
//plateOutput.setRequired(true);
|
||||
//plateOutput.setDescription("Prefix for plate output filenames");
|
||||
//mainOptions.addOption(plateOutput);
|
||||
Option plateErr = Option.builder("err")
|
||||
.longOpt("drop-out-rate")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.desc("Well drop-out rate. (Probability between 0 and 1)")
|
||||
.build();
|
||||
mainOptions.addOption(plateErr);
|
||||
Option plateConcentrations = Option.builder("t")
|
||||
.longOpt("t-cells-per-well")
|
||||
.hasArgs()
|
||||
.argName("number 1, number 2, ...")
|
||||
.desc("Number of T cells per well for each plate section")
|
||||
.build();
|
||||
mainOptions.addOption(plateConcentrations);
|
||||
|
||||
//different distributions, mutually exclusive
|
||||
OptionGroup plateDistributions = new OptionGroup();
|
||||
Option plateExp = Option.builder("exponential")
|
||||
.desc("Sample from distinct cells with exponential frequency distribution")
|
||||
.build();
|
||||
plateDistributions.addOption(plateExp);
|
||||
Option plateGaussian = Option.builder("gaussian")
|
||||
.desc("Sample from distinct cells with gaussain frequency distribution")
|
||||
.build();
|
||||
plateDistributions.addOption(plateGaussian);
|
||||
Option platePoisson = Option.builder("poisson")
|
||||
.desc("Sample from distinct cells with poisson frequency distribution")
|
||||
.build();
|
||||
plateDistributions.addOption(platePoisson);
|
||||
mainOptions.addOptionGroup(plateDistributions);
|
||||
|
||||
Option plateStdDev = Option.builder("stddev")
|
||||
.desc("Standard deviation for gaussian distribution")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.build();
|
||||
mainOptions.addOption(plateStdDev);
|
||||
|
||||
Option plateLambda = Option.builder("lambda")
|
||||
.desc("Lambda for exponential distribution")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.build();
|
||||
mainOptions.addOption(plateLambda);
|
||||
|
||||
|
||||
|
||||
//
|
||||
// String cellFile, String filename, Double stdDev,
|
||||
// Integer numWells, Integer numSections,
|
||||
// Integer[] concentrations, Double dropOutRate
|
||||
//
|
||||
|
||||
//Options matchOptions = new Options();
|
||||
inputCells.setDescription("The cell sample file to be used for matching.");
|
||||
mainOptions.addOption(inputCells);
|
||||
Option lowThresh = Option.builder("low")
|
||||
.longOpt("low-threshold")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.desc("Sets the minimum occupancy overlap to attempt matching")
|
||||
.build();
|
||||
mainOptions.addOption(lowThresh);
|
||||
Option highThresh = Option.builder("high")
|
||||
.longOpt("high-threshold")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.desc("Sets the maximum occupancy overlap to attempt matching")
|
||||
.build();
|
||||
mainOptions.addOption(highThresh);
|
||||
Option occDiff = Option.builder("occdiff")
|
||||
.longOpt("occupancy-difference")
|
||||
.hasArg()
|
||||
.argName("Number")
|
||||
.desc("Maximum difference in alpha/beta occupancy to attempt matching")
|
||||
.build();
|
||||
mainOptions.addOption(occDiff);
|
||||
Option overlapPer = Option.builder("ovper")
|
||||
.longOpt("overlap-percent")
|
||||
.hasArg()
|
||||
.argName("Percent")
|
||||
.desc("Minimum overlap percent to attempt matching (0 -100)")
|
||||
.build();
|
||||
mainOptions.addOption(overlapPer);
|
||||
Option inputPlates = Option.builder("p")
|
||||
.longOpt("plate-files")
|
||||
.hasArgs()
|
||||
.desc("Plate files to match")
|
||||
.build();
|
||||
mainOptions.addOption(inputPlates);
|
||||
|
||||
|
||||
|
||||
CommandLineParser parser = new DefaultParser();
|
||||
try {
|
||||
CommandLine line = parser.parse(mainOptions, args);
|
||||
if(line.hasOption("match")){
|
||||
//line = parser.parse(mainOptions, args);
|
||||
//String cellFile = line.getOptionValue("c");
|
||||
String graphFile = line.getOptionValue("g");
|
||||
Integer lowThreshold = Integer.valueOf(line.getOptionValue(lowThresh));
|
||||
Integer highThreshold = Integer.valueOf(line.getOptionValue(highThresh));
|
||||
Integer occupancyDifference = Integer.valueOf(line.getOptionValue(occDiff));
|
||||
Integer overlapPercent = Integer.valueOf(line.getOptionValue(overlapPer));
|
||||
for(String plate: line.getOptionValues("p")) {
|
||||
matchCDR3s(graphFile, lowThreshold, highThreshold, occupancyDifference, overlapPercent);
|
||||
}
|
||||
}
|
||||
else if(line.hasOption("cells")){
|
||||
//line = parser.parse(mainOptions, args);
|
||||
String filename = line.getOptionValue("o");
|
||||
Integer numDistCells = Integer.valueOf(line.getOptionValue("nc"));
|
||||
Integer freq = Integer.valueOf(line.getOptionValue("d"));
|
||||
makeCells(filename, numDistCells, freq);
|
||||
}
|
||||
else if(line.hasOption("plates")){
|
||||
//line = parser.parse(mainOptions, args);
|
||||
String cellFile = line.getOptionValue("c");
|
||||
String filenamePrefix = line.getOptionValue("o");
|
||||
Integer numWellsOnPlate = Integer.valueOf(line.getOptionValue("w"));
|
||||
Integer numPlatesToMake = Integer.valueOf(line.getOptionValue("np"));
|
||||
String[] concentrationsToUseString = line.getOptionValues("t");
|
||||
Integer numSections = concentrationsToUseString.length;
|
||||
|
||||
Integer[] concentrationsToUse = new Integer[numSections];
|
||||
for(int i = 0; i <numSections; i++){
|
||||
concentrationsToUse[i] = Integer.valueOf(concentrationsToUseString[i]);
|
||||
}
|
||||
Double dropOutRate = Double.valueOf(line.getOptionValue("err"));
|
||||
if(line.hasOption("exponential")){
|
||||
Double lambda = Double.valueOf(line.getOptionValue("lambda"));
|
||||
for(int i = 1; i <= numPlatesToMake; i++){
|
||||
makePlateExp(cellFile, filenamePrefix + i, lambda, numWellsOnPlate,
|
||||
concentrationsToUse,dropOutRate);
|
||||
}
|
||||
}
|
||||
else if(line.hasOption("gaussian")){
|
||||
Double stdDev = Double.valueOf(line.getOptionValue("std-dev"));
|
||||
for(int i = 1; i <= numPlatesToMake; i++){
|
||||
makePlate(cellFile, filenamePrefix + i, stdDev, numWellsOnPlate,
|
||||
concentrationsToUse,dropOutRate);
|
||||
}
|
||||
|
||||
}
|
||||
else if(line.hasOption("poisson")){
|
||||
for(int i = 1; i <= numPlatesToMake; i++){
|
||||
makePlatePoisson(cellFile, filenamePrefix + i, numWellsOnPlate,
|
||||
concentrationsToUse,dropOutRate);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
catch (ParseException exp) {
|
||||
System.err.println("Parsing failed. Reason: " + exp.getMessage());
|
||||
}
|
||||
}
|
||||
|
||||
//for calling from command line
|
||||
public static void makeCells(String filename, Integer numCells, Integer cdr1Freq){
|
||||
CellSample sample = new CellSample(numCells, cdr1Freq);
|
||||
CellFileWriter writer = new CellFileWriter(filename, sample);
|
||||
writer.writeCellsToFile();
|
||||
}
|
||||
|
||||
public static void makePlateExp(String cellFile, String filename, Double lambda,
|
||||
Integer numWells, Integer[] concentrations, Double dropOutRate){
|
||||
CellFileReader cellReader = new CellFileReader(cellFile);
|
||||
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
|
||||
samplePlate.fillWellsExponential(cellReader.getFilename(), cellReader.getListOfDistinctCellsDEPRECATED(), lambda);
|
||||
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
|
||||
writer.writePlateFile();
|
||||
}
|
||||
|
||||
private static void makePlatePoisson(String cellFile, String filename, Integer numWells,
|
||||
Integer[] concentrations, Double dropOutRate){
|
||||
CellFileReader cellReader = new CellFileReader(cellFile);
|
||||
Double stdDev = Math.sqrt(cellReader.getCellCountDEPRECATED());
|
||||
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
|
||||
samplePlate.fillWells(cellReader.getFilename(), cellReader.getListOfDistinctCellsDEPRECATED(), stdDev);
|
||||
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
|
||||
writer.writePlateFile();
|
||||
}
|
||||
|
||||
private static void makePlate(String cellFile, String filename, Double stdDev,
|
||||
Integer numWells, Integer[] concentrations, Double dropOutRate){
|
||||
CellFileReader cellReader = new CellFileReader(cellFile);
|
||||
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
|
||||
samplePlate.fillWells(cellReader.getFilename(), cellReader.getListOfDistinctCellsDEPRECATED(), stdDev);
|
||||
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
|
||||
writer.writePlateFile();
|
||||
}
|
||||
|
||||
private static void matchCDR3s(String graphFile, Integer lowThreshold, Integer highThreshold,
|
||||
Integer occupancyDifference, Integer overlapPercent) {
|
||||
|
||||
}
|
||||
}
|
||||
@@ -4,6 +4,9 @@ import java.math.MathContext;
|
||||
|
||||
public abstract class Equations {
|
||||
|
||||
//pValue calculation as described in original pairSEQ paper.
|
||||
//Included for comparison with original results.
|
||||
//Not used by BiGpairSEQ for matching.
|
||||
public static double pValue(Integer w, Integer w_a, Integer w_b, double w_ab_d) {
|
||||
int w_ab = (int) w_ab_d;
|
||||
double pv = 0.0;
|
||||
@@ -14,6 +17,9 @@ public abstract class Equations {
|
||||
return pv;
|
||||
}
|
||||
|
||||
//Implementation of the (corrected) probability equation from pairSEQ paper.
|
||||
//Included for comparison with original results.
|
||||
//Not used by BiGpairSEQ for matching.
|
||||
private static double probPairedByChance(Integer w, Integer w_a, Integer w_b, Integer w_ab){
|
||||
BigInteger numer1 = choose(w, w_ab);
|
||||
BigInteger numer2 = choose(w - w_ab, w_a - w_ab);
|
||||
@@ -26,10 +32,9 @@ public abstract class Equations {
|
||||
return prob.doubleValue();
|
||||
}
|
||||
|
||||
/*
|
||||
* This works because nC(k+1) = nCk * (n-k)/(k+1)
|
||||
* Since nC0 = 1, can start there and generate all the rest.
|
||||
*/
|
||||
|
||||
//This works because nC(k+1) = nCk * (n-k)/(k+1)
|
||||
//Since nC0 = 1, can start there and generate all the rest.
|
||||
public static BigInteger choose(final int N, final int K) {
|
||||
BigInteger nCk = BigInteger.ONE;
|
||||
for (int k = 0; k < K; k++) {
|
||||
|
||||
31
src/main/java/GraphDataObjectReader.java
Normal file
31
src/main/java/GraphDataObjectReader.java
Normal file
@@ -0,0 +1,31 @@
|
||||
import java.io.*;
|
||||
|
||||
public class GraphDataObjectReader {
|
||||
private GraphWithMapData data;
|
||||
private String filename;
|
||||
|
||||
public GraphDataObjectReader(String filename) throws IOException {
|
||||
if(!filename.matches(".*\\.ser")){
|
||||
filename = filename + ".ser";
|
||||
}
|
||||
this.filename = filename;
|
||||
try(//don't need to close these because of try-with-resources
|
||||
BufferedInputStream fileIn = new BufferedInputStream(new FileInputStream(filename));
|
||||
ObjectInputStream in = new ObjectInputStream(fileIn))
|
||||
{
|
||||
System.out.println("Reading graph data from file. This may take some time");
|
||||
System.out.println("File I/O time is not included in results");
|
||||
data = (GraphWithMapData) in.readObject();
|
||||
} catch (FileNotFoundException | ClassNotFoundException ex) {
|
||||
ex.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
public GraphWithMapData getData() {
|
||||
return data;
|
||||
}
|
||||
|
||||
public String getFilename() {
|
||||
return filename;
|
||||
}
|
||||
}
|
||||
31
src/main/java/GraphDataObjectWriter.java
Normal file
31
src/main/java/GraphDataObjectWriter.java
Normal file
@@ -0,0 +1,31 @@
|
||||
import java.io.BufferedOutputStream;
|
||||
import java.io.FileOutputStream;
|
||||
import java.io.IOException;
|
||||
import java.io.ObjectOutputStream;
|
||||
|
||||
public class GraphDataObjectWriter {
|
||||
|
||||
private GraphWithMapData data;
|
||||
private String filename;
|
||||
|
||||
public GraphDataObjectWriter(String filename, GraphWithMapData data) {
|
||||
if(!filename.matches(".*\\.ser")){
|
||||
filename = filename + ".ser";
|
||||
}
|
||||
this.filename = filename;
|
||||
this.data = data;
|
||||
}
|
||||
|
||||
public void writeDataToFile() {
|
||||
try (BufferedOutputStream bufferedOut = new BufferedOutputStream(new FileOutputStream(filename));
|
||||
|
||||
ObjectOutputStream out = new ObjectOutputStream(bufferedOut);
|
||||
){
|
||||
System.out.println("Writing graph and occupancy data to file. This may take some time.");
|
||||
System.out.println("File I/O time is not included in results.");
|
||||
out.writeObject(data);
|
||||
} catch (IOException ex) {
|
||||
ex.printStackTrace();
|
||||
}
|
||||
}
|
||||
}
|
||||
84
src/main/java/GraphMLFileWriter.java
Normal file
84
src/main/java/GraphMLFileWriter.java
Normal file
@@ -0,0 +1,84 @@
|
||||
import org.jgrapht.graph.DefaultWeightedEdge;
|
||||
import org.jgrapht.graph.SimpleWeightedGraph;
|
||||
import org.jgrapht.nio.Attribute;
|
||||
import org.jgrapht.nio.AttributeType;
|
||||
import org.jgrapht.nio.DefaultAttribute;
|
||||
import org.jgrapht.nio.dot.DOTExporter;
|
||||
import org.jgrapht.nio.graphml.GraphMLExporter;
|
||||
|
||||
import java.io.BufferedWriter;
|
||||
import java.io.IOException;
|
||||
import java.nio.file.Files;
|
||||
import java.nio.file.Path;
|
||||
import java.nio.file.StandardOpenOption;
|
||||
import java.util.HashMap;
|
||||
import java.util.LinkedHashMap;
|
||||
import java.util.Map;
|
||||
|
||||
public class GraphMLFileWriter {
|
||||
|
||||
String filename;
|
||||
GraphWithMapData data;
|
||||
|
||||
|
||||
public GraphMLFileWriter(String filename, GraphWithMapData data) {
|
||||
if(!filename.matches(".*\\.graphml")){
|
||||
filename = filename + ".graphml";
|
||||
}
|
||||
this.filename = filename;
|
||||
this.data = data;
|
||||
}
|
||||
|
||||
// public void writeGraphToFile() {
|
||||
// try(BufferedWriter writer = Files.newBufferedWriter(Path.of(filename), StandardOpenOption.CREATE_NEW);
|
||||
// ){
|
||||
// GraphMLExporter<SimpleWeightedGraph, BufferedWriter> exporter = new GraphMLExporter<>();
|
||||
// exporter.exportGraph(graph, writer);
|
||||
// } catch(IOException ex){
|
||||
// System.out.println("Could not make new file named "+filename);
|
||||
// System.err.println(ex);
|
||||
// }
|
||||
// }
|
||||
|
||||
public void writeGraphToFile() {
|
||||
SimpleWeightedGraph graph = data.getGraph();
|
||||
Map<Integer, Integer> vertexToAlphaMap = data.getPlateVtoAMap();
|
||||
Map<Integer, Integer> vertexToBetaMap = data.getPlateVtoBMap();
|
||||
Map<Integer, Integer> alphaOccs = data.getAlphaWellCounts();
|
||||
Map<Integer, Integer> betaOccs = data.getBetaWellCounts();
|
||||
try(BufferedWriter writer = Files.newBufferedWriter(Path.of(filename), StandardOpenOption.CREATE_NEW);
|
||||
){
|
||||
//create exporter. Let the vertex labels be the unique ids for the vertices
|
||||
GraphMLExporter<Integer, SimpleWeightedGraph<Vertex, DefaultWeightedEdge>> exporter = new GraphMLExporter<>(v -> v.toString());
|
||||
//set to export weights
|
||||
exporter.setExportEdgeWeights(true);
|
||||
//set type, sequence, and occupancy attributes for each vertex
|
||||
exporter.setVertexAttributeProvider( v -> {
|
||||
Map<String, Attribute> attributes = new HashMap<>();
|
||||
if(vertexToAlphaMap.containsKey(v)) {
|
||||
attributes.put("type", DefaultAttribute.createAttribute("CDR3 Alpha"));
|
||||
attributes.put("sequence", DefaultAttribute.createAttribute(vertexToAlphaMap.get(v)));
|
||||
attributes.put("occupancy", DefaultAttribute.createAttribute(
|
||||
alphaOccs.get(vertexToAlphaMap.get(v))));
|
||||
}
|
||||
else if(vertexToBetaMap.containsKey(v)) {
|
||||
attributes.put("type", DefaultAttribute.createAttribute("CDR3 Beta"));
|
||||
attributes.put("sequence", DefaultAttribute.createAttribute(vertexToBetaMap.get(v)));
|
||||
attributes.put("occupancy", DefaultAttribute.createAttribute(
|
||||
betaOccs.get(vertexToBetaMap.get(v))));
|
||||
}
|
||||
return attributes;
|
||||
});
|
||||
//register the attributes
|
||||
exporter.registerAttribute("type", GraphMLExporter.AttributeCategory.NODE, AttributeType.STRING);
|
||||
exporter.registerAttribute("sequence", GraphMLExporter.AttributeCategory.NODE, AttributeType.STRING);
|
||||
exporter.registerAttribute("occupancy", GraphMLExporter.AttributeCategory.NODE, AttributeType.STRING);
|
||||
//export the graph
|
||||
exporter.exportGraph(graph, writer);
|
||||
} catch(IOException ex){
|
||||
System.out.println("Could not make new file named "+filename);
|
||||
System.err.println(ex);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
111
src/main/java/GraphModificationFunctions.java
Normal file
111
src/main/java/GraphModificationFunctions.java
Normal file
@@ -0,0 +1,111 @@
|
||||
import org.jgrapht.graph.DefaultWeightedEdge;
|
||||
import org.jgrapht.graph.SimpleWeightedGraph;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
public interface GraphModificationFunctions {
|
||||
|
||||
//remove over- and under-weight edges
|
||||
static List<Integer[]> filterByOverlapThresholds(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
|
||||
int low, int high, boolean saveEdges) {
|
||||
List<Integer[]> removedEdges = new ArrayList<>();
|
||||
for (DefaultWeightedEdge e : graph.edgeSet()) {
|
||||
if ((graph.getEdgeWeight(e) > high) || (graph.getEdgeWeight(e) < low)) {
|
||||
if(saveEdges) {
|
||||
Integer source = graph.getEdgeSource(e);
|
||||
Integer target = graph.getEdgeTarget(e);
|
||||
Integer weight = (int) graph.getEdgeWeight(e);
|
||||
Integer[] edge = {source, target, weight};
|
||||
removedEdges.add(edge);
|
||||
}
|
||||
else {
|
||||
graph.setEdgeWeight(e, 0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
if(saveEdges) {
|
||||
for (Integer[] edge : removedEdges) {
|
||||
graph.removeEdge(edge[0], edge[1]);
|
||||
}
|
||||
}
|
||||
return removedEdges;
|
||||
}
|
||||
|
||||
//Remove edges for pairs with large occupancy discrepancy
|
||||
static List<Integer[]> filterByRelativeOccupancy(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
|
||||
Map<Integer, Integer> alphaWellCounts,
|
||||
Map<Integer, Integer> betaWellCounts,
|
||||
Map<Integer, Integer> plateVtoAMap,
|
||||
Map<Integer, Integer> plateVtoBMap,
|
||||
Integer maxOccupancyDifference, boolean saveEdges) {
|
||||
List<Integer[]> removedEdges = new ArrayList<>();
|
||||
for (DefaultWeightedEdge e : graph.edgeSet()) {
|
||||
Integer alphaOcc = alphaWellCounts.get(plateVtoAMap.get(graph.getEdgeSource(e)));
|
||||
Integer betaOcc = betaWellCounts.get(plateVtoBMap.get(graph.getEdgeTarget(e)));
|
||||
if (Math.abs(alphaOcc - betaOcc) >= maxOccupancyDifference) {
|
||||
if (saveEdges) {
|
||||
Integer source = graph.getEdgeSource(e);
|
||||
Integer target = graph.getEdgeTarget(e);
|
||||
Integer weight = (int) graph.getEdgeWeight(e);
|
||||
Integer[] edge = {source, target, weight};
|
||||
removedEdges.add(edge);
|
||||
}
|
||||
else {
|
||||
graph.setEdgeWeight(e, 0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
if(saveEdges) {
|
||||
for (Integer[] edge : removedEdges) {
|
||||
graph.removeEdge(edge[0], edge[1]);
|
||||
}
|
||||
}
|
||||
return removedEdges;
|
||||
}
|
||||
|
||||
//Remove edges for pairs where overlap size is significantly lower than the well occupancy
|
||||
static List<Integer[]> filterByOverlapPercent(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
|
||||
Map<Integer, Integer> alphaWellCounts,
|
||||
Map<Integer, Integer> betaWellCounts,
|
||||
Map<Integer, Integer> plateVtoAMap,
|
||||
Map<Integer, Integer> plateVtoBMap,
|
||||
Integer minOverlapPercent,
|
||||
boolean saveEdges) {
|
||||
List<Integer[]> removedEdges = new ArrayList<>();
|
||||
for (DefaultWeightedEdge e : graph.edgeSet()) {
|
||||
Integer alphaOcc = alphaWellCounts.get(plateVtoAMap.get(graph.getEdgeSource(e)));
|
||||
Integer betaOcc = betaWellCounts.get(plateVtoBMap.get(graph.getEdgeTarget(e)));
|
||||
double weight = graph.getEdgeWeight(e);
|
||||
double min = minOverlapPercent / 100.0;
|
||||
if ((weight / alphaOcc < min) || (weight / betaOcc < min)) {
|
||||
if(saveEdges) {
|
||||
Integer source = graph.getEdgeSource(e);
|
||||
Integer target = graph.getEdgeTarget(e);
|
||||
Integer intWeight = (int) graph.getEdgeWeight(e);
|
||||
Integer[] edge = {source, target, intWeight};
|
||||
removedEdges.add(edge);
|
||||
}
|
||||
else {
|
||||
graph.setEdgeWeight(e, 0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
if(saveEdges) {
|
||||
for (Integer[] edge : removedEdges) {
|
||||
graph.removeEdge(edge[0], edge[1]);
|
||||
}
|
||||
}
|
||||
return removedEdges;
|
||||
}
|
||||
|
||||
static void addRemovedEdges(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
|
||||
List<Integer[]> removedEdges) {
|
||||
for (Integer[] edge : removedEdges) {
|
||||
DefaultWeightedEdge e = graph.addEdge(edge[0], edge[1]);
|
||||
graph.setEdgeWeight(e, (double) edge[2]);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
106
src/main/java/GraphWithMapData.java
Normal file
106
src/main/java/GraphWithMapData.java
Normal file
@@ -0,0 +1,106 @@
|
||||
import org.jgrapht.graph.SimpleWeightedGraph;
|
||||
|
||||
import java.time.Duration;
|
||||
import java.util.Map;
|
||||
|
||||
//Can't just write the graph, because I need the occupancy data too.
|
||||
//Makes most sense to serialize object and write that to a file.
|
||||
//Which means there's no reason to split map data and graph data up.
|
||||
public class GraphWithMapData implements java.io.Serializable {
|
||||
|
||||
private String sourceFilename;
|
||||
private final SimpleWeightedGraph graph;
|
||||
private Integer numWells;
|
||||
private Integer[] wellPopulations;
|
||||
private Integer alphaCount;
|
||||
private Integer betaCount;
|
||||
private final Map<Integer, Integer> distCellsMapAlphaKey;
|
||||
private final Map<Integer, Integer> plateVtoAMap;
|
||||
private final Map<Integer, Integer> plateVtoBMap;
|
||||
private final Map<Integer, Integer> plateAtoVMap;
|
||||
private final Map<Integer, Integer> plateBtoVMap;
|
||||
private final Map<Integer, Integer> alphaWellCounts;
|
||||
private final Map<Integer, Integer> betaWellCounts;
|
||||
private final Duration time;
|
||||
|
||||
public GraphWithMapData(SimpleWeightedGraph graph, Integer numWells, Integer[] wellConcentrations,
|
||||
Integer alphaCount, Integer betaCount,
|
||||
Map<Integer, Integer> distCellsMapAlphaKey, Map<Integer, Integer> plateVtoAMap,
|
||||
Map<Integer,Integer> plateVtoBMap, Map<Integer, Integer> plateAtoVMap,
|
||||
Map<Integer, Integer> plateBtoVMap, Map<Integer, Integer> alphaWellCounts,
|
||||
Map<Integer, Integer> betaWellCounts, Duration time) {
|
||||
this.graph = graph;
|
||||
this.numWells = numWells;
|
||||
this.wellPopulations = wellConcentrations;
|
||||
this.alphaCount = alphaCount;
|
||||
this.betaCount = betaCount;
|
||||
this.distCellsMapAlphaKey = distCellsMapAlphaKey;
|
||||
this.plateVtoAMap = plateVtoAMap;
|
||||
this.plateVtoBMap = plateVtoBMap;
|
||||
this.plateAtoVMap = plateAtoVMap;
|
||||
this.plateBtoVMap = plateBtoVMap;
|
||||
this.alphaWellCounts = alphaWellCounts;
|
||||
this.betaWellCounts = betaWellCounts;
|
||||
this.time = time;
|
||||
}
|
||||
|
||||
public SimpleWeightedGraph getGraph() {
|
||||
return graph;
|
||||
}
|
||||
|
||||
public Integer getNumWells() {
|
||||
return numWells;
|
||||
}
|
||||
|
||||
public Integer[] getWellPopulations() {
|
||||
return wellPopulations;
|
||||
}
|
||||
|
||||
public Integer getAlphaCount() {
|
||||
return alphaCount;
|
||||
}
|
||||
|
||||
public Integer getBetaCount() {
|
||||
return betaCount;
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getDistCellsMapAlphaKey() {
|
||||
return distCellsMapAlphaKey;
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getPlateVtoAMap() {
|
||||
return plateVtoAMap;
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getPlateVtoBMap() {
|
||||
return plateVtoBMap;
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getPlateAtoVMap() {
|
||||
return plateAtoVMap;
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getPlateBtoVMap() {
|
||||
return plateBtoVMap;
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getAlphaWellCounts() {
|
||||
return alphaWellCounts;
|
||||
}
|
||||
|
||||
public Map<Integer, Integer> getBetaWellCounts() {
|
||||
return betaWellCounts;
|
||||
}
|
||||
|
||||
public Duration getTime() {
|
||||
return time;
|
||||
}
|
||||
|
||||
public void setSourceFilename(String filename) {
|
||||
this.sourceFilename = filename;
|
||||
}
|
||||
|
||||
public String getSourceFilename() {
|
||||
return sourceFilename;
|
||||
}
|
||||
}
|
||||
589
src/main/java/InteractiveInterface.java
Normal file
589
src/main/java/InteractiveInterface.java
Normal file
@@ -0,0 +1,589 @@
|
||||
import java.io.IOException;
|
||||
import java.util.*;
|
||||
import java.util.regex.Matcher;
|
||||
import java.util.regex.Pattern;
|
||||
|
||||
//
|
||||
public class InteractiveInterface {
|
||||
|
||||
private static final Random rand = BiGpairSEQ.getRand();
|
||||
private static final Scanner sc = new Scanner(System.in);
|
||||
private static int input;
|
||||
private static boolean quit = false;
|
||||
|
||||
public static void startInteractive() {
|
||||
|
||||
while (!quit) {
|
||||
System.out.println();
|
||||
System.out.println("--------BiGPairSEQ SIMULATOR--------");
|
||||
System.out.println("ALPHA/BETA T CELL RECEPTOR MATCHING");
|
||||
System.out.println(" USING WEIGHTED BIPARTITE GRAPHS ");
|
||||
System.out.println("------------------------------------");
|
||||
System.out.println("Please select an option:");
|
||||
System.out.println("1) Generate a population of distinct cells");
|
||||
System.out.println("2) Generate a sample plate of T cells");
|
||||
System.out.println("3) Generate CDR3 alpha/beta occupancy data and overlap graph");
|
||||
System.out.println("4) Simulate bipartite graph CDR3 alpha/beta matching (BiGpairSEQ)");
|
||||
//Need to re-do the CDR3/CDR1 matching to correspond to new pattern
|
||||
//System.out.println("5) Generate CDR3/CDR1 occupancy graph");
|
||||
//System.out.println("6) Simulate CDR3/CDR1 T cell matching");
|
||||
System.out.println("8) Options");
|
||||
System.out.println("9) About/Acknowledgments");
|
||||
System.out.println("0) Exit");
|
||||
try {
|
||||
input = sc.nextInt();
|
||||
switch (input) {
|
||||
case 1 -> makeCells();
|
||||
case 2 -> makePlate();
|
||||
case 3 -> makeCDR3Graph();
|
||||
case 4 -> matchCDR3s();
|
||||
//case 6 -> matchCellsCDR1();
|
||||
case 8 -> mainOptions();
|
||||
case 9 -> acknowledge();
|
||||
case 0 -> quit = true;
|
||||
default -> System.out.println("Invalid input.");
|
||||
}
|
||||
} catch (InputMismatchException | IOException ex) {
|
||||
System.out.println(ex);
|
||||
sc.next();
|
||||
}
|
||||
}
|
||||
sc.close();
|
||||
}
|
||||
|
||||
private static void makeCells() {
|
||||
String filename = null;
|
||||
Integer numCells = 0;
|
||||
Integer cdr1Freq = 1;
|
||||
try {
|
||||
System.out.println("\nSimulated T-Cells consist of integer values representing:\n" +
|
||||
"* a pair of alpha and beta CDR3 peptides (unique within simulated population)\n" +
|
||||
"* a pair of alpha and beta CDR1 peptides (not necessarily unique).");
|
||||
System.out.println("\nThe cells will be written to a CSV file.");
|
||||
System.out.print("Please enter a file name: ");
|
||||
filename = sc.next();
|
||||
System.out.println("\nCDR3 sequences are more diverse than CDR1 sequences.");
|
||||
System.out.println("Please enter the factor by which distinct CDR3s outnumber CDR1s: ");
|
||||
cdr1Freq = sc.nextInt();
|
||||
System.out.print("\nPlease enter the number of T-cells to generate: ");
|
||||
numCells = sc.nextInt();
|
||||
if(numCells <= 0){
|
||||
throw new InputMismatchException("Number of cells must be a positive integer.");
|
||||
}
|
||||
} catch (InputMismatchException ex) {
|
||||
System.out.println(ex);
|
||||
sc.next();
|
||||
}
|
||||
CellSample sample = new CellSample(numCells, cdr1Freq);
|
||||
assert filename != null;
|
||||
System.out.println("Writing cells to file");
|
||||
CellFileWriter writer = new CellFileWriter(filename, sample);
|
||||
writer.writeCellsToFile();
|
||||
System.out.println("Cell sample written to: " + filename);
|
||||
if(BiGpairSEQ.cacheCells()) {
|
||||
BiGpairSEQ.setCellSampleInMemory(sample, filename);
|
||||
}
|
||||
}
|
||||
|
||||
//Output a CSV of sample plate
|
||||
private static void makePlate() {
|
||||
String cellFile = null;
|
||||
String filename = null;
|
||||
Double stdDev = 0.0;
|
||||
Integer numWells = 0;
|
||||
Integer numSections;
|
||||
Integer[] populations = {1};
|
||||
Double dropOutRate = 0.0;
|
||||
boolean poisson = false;
|
||||
boolean exponential = false;
|
||||
double lambda = 1.5;
|
||||
try {
|
||||
System.out.println("\nSimulated sample plates consist of:");
|
||||
System.out.println("* a number of wells");
|
||||
System.out.println(" * separated into one or more sections");
|
||||
System.out.println(" * each of which has a set quantity of cells per well");
|
||||
System.out.println(" * selected from a statistical distribution of distinct cells");
|
||||
System.out.println(" * with a set dropout rate for individual sequences within a cell");
|
||||
System.out.println("\nMaking a sample plate requires a population of distinct cells");
|
||||
System.out.print("Please enter name of an existing cell sample file: ");
|
||||
cellFile = sc.next();
|
||||
System.out.println("\nThe sample plate will be written to a CSV file");
|
||||
System.out.print("Please enter a name for the output file: ");
|
||||
filename = sc.next();
|
||||
System.out.println("\nSelect T-cell frequency distribution function");
|
||||
System.out.println("1) Poisson");
|
||||
System.out.println("2) Gaussian");
|
||||
System.out.println("3) Exponential");
|
||||
System.out.println("(Note: approximate distribution in original paper is exponential, lambda = 0.6)");
|
||||
System.out.println("(lambda value approximated from slope of log-log graph in figure 4c)");
|
||||
System.out.println("(Note: wider distributions are more memory intensive to match)");
|
||||
System.out.print("Enter selection value: ");
|
||||
input = sc.nextInt();
|
||||
switch (input) {
|
||||
case 1 -> poisson = true;
|
||||
case 2 -> {
|
||||
System.out.println("How many distinct T-cells within one standard deviation of peak frequency?");
|
||||
System.out.println("(Note: wider distributions are more memory intensive to match)");
|
||||
stdDev = sc.nextDouble();
|
||||
if (stdDev <= 0.0) {
|
||||
throw new InputMismatchException("Value must be positive.");
|
||||
}
|
||||
}
|
||||
case 3 -> {
|
||||
exponential = true;
|
||||
System.out.print("Please enter lambda value for exponential distribution: ");
|
||||
lambda = sc.nextDouble();
|
||||
if (lambda <= 0.0) {
|
||||
lambda = 0.6;
|
||||
System.out.println("Value must be positive. Defaulting to 0.6.");
|
||||
}
|
||||
}
|
||||
default -> {
|
||||
System.out.println("Invalid input. Defaulting to exponential.");
|
||||
exponential = true;
|
||||
}
|
||||
}
|
||||
System.out.print("\nNumber of wells on plate: ");
|
||||
numWells = sc.nextInt();
|
||||
if(numWells < 1){
|
||||
throw new InputMismatchException("No wells on plate");
|
||||
}
|
||||
//choose whether to make T cell population/well random
|
||||
boolean randomWellPopulations;
|
||||
System.out.println("Randomize number of T cells in each well? (y/n)");
|
||||
String ans = sc.next();
|
||||
Pattern pattern = Pattern.compile("(?:yes|y)", Pattern.CASE_INSENSITIVE);
|
||||
Matcher matcher = pattern.matcher(ans);
|
||||
if(matcher.matches()){
|
||||
randomWellPopulations = true;
|
||||
}
|
||||
else{
|
||||
randomWellPopulations = false;
|
||||
}
|
||||
if(randomWellPopulations) { //if T cell population/well is random
|
||||
numSections = numWells;
|
||||
Integer minPop;
|
||||
Integer maxPop;
|
||||
System.out.print("Please enter minimum number of T cells in a well: ");
|
||||
minPop = sc.nextInt();
|
||||
if(minPop < 1) {
|
||||
throw new InputMismatchException("Minimum well population must be positive");
|
||||
}
|
||||
System.out.println("Please enter maximum number of T cells in a well: ");
|
||||
maxPop = sc.nextInt();
|
||||
if(maxPop < minPop) {
|
||||
throw new InputMismatchException("Max well population must be greater than min well population");
|
||||
}
|
||||
//maximum should be inclusive, so need to add one to max of randomly generated values
|
||||
populations = rand.ints(minPop, maxPop + 1)
|
||||
.limit(numSections)
|
||||
.boxed()
|
||||
.toArray(Integer[]::new);
|
||||
System.out.print("Populations: ");
|
||||
System.out.println(Arrays.toString(populations));
|
||||
}
|
||||
else{ //if T cell population/well is not random
|
||||
System.out.println("\nThe plate can be evenly sectioned to allow different numbers of T cells per well.");
|
||||
System.out.println("How many sections would you like to make (minimum 1)?");
|
||||
numSections = sc.nextInt();
|
||||
if (numSections < 1) {
|
||||
throw new InputMismatchException("Too few sections.");
|
||||
} else if (numSections > numWells) {
|
||||
throw new InputMismatchException("Cannot have more sections than wells.");
|
||||
}
|
||||
int i = 1;
|
||||
populations = new Integer[numSections];
|
||||
while (numSections > 0) {
|
||||
System.out.print("Enter number of T cells per well in section " + i + ": ");
|
||||
populations[i - 1] = sc.nextInt();
|
||||
i++;
|
||||
numSections--;
|
||||
}
|
||||
}
|
||||
System.out.println("\nErrors in amplification can induce a well dropout rate for sequences");
|
||||
System.out.print("Enter well dropout rate (0.0 to 1.0): ");
|
||||
dropOutRate = sc.nextDouble();
|
||||
if(dropOutRate < 0.0 || dropOutRate > 1.0) {
|
||||
throw new InputMismatchException("The well dropout rate must be in the range [0.0, 1.0]");
|
||||
}
|
||||
}catch(InputMismatchException ex){
|
||||
System.out.println(ex);
|
||||
sc.next();
|
||||
}
|
||||
assert cellFile != null;
|
||||
CellSample cells;
|
||||
if (cellFile.equals(BiGpairSEQ.getCellFilename())){
|
||||
cells = BiGpairSEQ.getCellSampleInMemory();
|
||||
}
|
||||
else {
|
||||
System.out.println("Reading Cell Sample file: " + cellFile);
|
||||
CellFileReader cellReader = new CellFileReader(cellFile);
|
||||
cells = cellReader.getCellSample();
|
||||
if(BiGpairSEQ.cacheCells()) {
|
||||
BiGpairSEQ.setCellSampleInMemory(cells, cellFile);
|
||||
}
|
||||
}
|
||||
assert filename != null;
|
||||
Plate samplePlate;
|
||||
PlateFileWriter writer;
|
||||
if(exponential){
|
||||
samplePlate = new Plate(numWells, dropOutRate, populations);
|
||||
samplePlate.fillWellsExponential(cellFile, cells.getCells(), lambda);
|
||||
writer = new PlateFileWriter(filename, samplePlate);
|
||||
}
|
||||
else {
|
||||
if (poisson) {
|
||||
stdDev = Math.sqrt(cells.getCellCount()); //gaussian with square root of elements approximates poisson
|
||||
}
|
||||
samplePlate = new Plate(numWells, dropOutRate, populations);
|
||||
samplePlate.fillWells(cellFile, cells.getCells(), stdDev);
|
||||
writer = new PlateFileWriter(filename, samplePlate);
|
||||
}
|
||||
System.out.println("Writing Sample Plate to file");
|
||||
writer.writePlateFile();
|
||||
System.out.println("Sample Plate written to file: " + filename);
|
||||
if(BiGpairSEQ.cachePlate()) {
|
||||
BiGpairSEQ.setPlateInMemory(samplePlate, filename);
|
||||
}
|
||||
}
|
||||
|
||||
//Output serialized binary of GraphAndMapData object
|
||||
private static void makeCDR3Graph() {
|
||||
String filename = null;
|
||||
String cellFile = null;
|
||||
String plateFile = null;
|
||||
try {
|
||||
String str = "\nGenerating bipartite weighted graph encoding occupancy overlap data ";
|
||||
str = str.concat("\nrequires a cell sample file and a sample plate file.");
|
||||
System.out.println(str);
|
||||
System.out.print("\nPlease enter name of an existing cell sample file: ");
|
||||
cellFile = sc.next();
|
||||
System.out.print("\nPlease enter name of an existing sample plate file: ");
|
||||
plateFile = sc.next();
|
||||
System.out.println("\nThe graph and occupancy data will be written to a serialized binary file.");
|
||||
System.out.print("Please enter a name for the output file: ");
|
||||
filename = sc.next();
|
||||
} catch (InputMismatchException ex) {
|
||||
System.out.println(ex);
|
||||
sc.next();
|
||||
}
|
||||
|
||||
assert cellFile != null;
|
||||
CellSample cellSample;
|
||||
//check if cells are already in memory
|
||||
if(cellFile.equals(BiGpairSEQ.getCellFilename()) && BiGpairSEQ.getCellSampleInMemory() != null) {
|
||||
cellSample = BiGpairSEQ.getCellSampleInMemory();
|
||||
}
|
||||
else {
|
||||
System.out.println("Reading Cell Sample file: " + cellFile);
|
||||
CellFileReader cellReader = new CellFileReader(cellFile);
|
||||
cellSample = cellReader.getCellSample();
|
||||
if(BiGpairSEQ.cacheCells()) {
|
||||
BiGpairSEQ.setCellSampleInMemory(cellSample, cellFile);
|
||||
}
|
||||
}
|
||||
|
||||
assert plateFile != null;
|
||||
Plate plate;
|
||||
//check if plate is already in memory
|
||||
if(plateFile.equals(BiGpairSEQ.getPlateFilename())){
|
||||
plate = BiGpairSEQ.getPlateInMemory();
|
||||
}
|
||||
else {
|
||||
System.out.println("Reading Sample Plate file: " + plateFile);
|
||||
PlateFileReader plateReader = new PlateFileReader(plateFile);
|
||||
plate = new Plate(plateReader.getFilename(), plateReader.getWells());
|
||||
if(BiGpairSEQ.cachePlate()) {
|
||||
BiGpairSEQ.setPlateInMemory(plate, plateFile);
|
||||
}
|
||||
}
|
||||
if (cellSample.getCells().size() == 0){
|
||||
System.out.println("No cell sample found.");
|
||||
System.out.println("Returning to main menu.");
|
||||
}
|
||||
else if(plate.getWells().size() == 0 || plate.getPopulations().length == 0){
|
||||
System.out.println("No sample plate found.");
|
||||
System.out.println("Returning to main menu.");
|
||||
}
|
||||
else{
|
||||
List<Integer[]> cells = cellSample.getCells();
|
||||
GraphWithMapData data = Simulator.makeGraph(cells, plate, true);
|
||||
assert filename != null;
|
||||
if(BiGpairSEQ.outputBinary()) {
|
||||
GraphDataObjectWriter dataWriter = new GraphDataObjectWriter(filename, data);
|
||||
dataWriter.writeDataToFile();
|
||||
System.out.println("Serialized binary graph/data file written to: " + filename);
|
||||
}
|
||||
if(BiGpairSEQ.outputGraphML()) {
|
||||
GraphMLFileWriter graphMLWriter = new GraphMLFileWriter(filename, data);
|
||||
graphMLWriter.writeGraphToFile();
|
||||
System.out.println("GraphML file written to: " + filename);
|
||||
}
|
||||
if(BiGpairSEQ.cacheGraph()) {
|
||||
BiGpairSEQ.setGraphInMemory(data, filename);
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Simulate matching and output CSV file of results
|
||||
private static void matchCDR3s() throws IOException {
|
||||
String filename = null;
|
||||
String graphFilename = null;
|
||||
Integer lowThreshold = 0;
|
||||
Integer highThreshold = Integer.MAX_VALUE;
|
||||
Integer maxOccupancyDiff = Integer.MAX_VALUE;
|
||||
Integer minOverlapPercent = 0;
|
||||
try {
|
||||
System.out.println("\nBiGpairSEQ simulation requires an occupancy data and overlap graph file");
|
||||
System.out.println("Please enter name of an existing graph and occupancy data file: ");
|
||||
graphFilename = sc.next();
|
||||
System.out.println("The matching results will be written to a file.");
|
||||
System.out.print("Please enter a name for the output file: ");
|
||||
filename = sc.next();
|
||||
System.out.println("\nWhat is the minimum number of CDR3 alpha/beta overlap wells to attempt matching?");
|
||||
lowThreshold = sc.nextInt();
|
||||
if(lowThreshold < 1){
|
||||
lowThreshold = 1;
|
||||
System.out.println("Value for low occupancy overlap threshold must be positive");
|
||||
System.out.println("Value for low occupancy overlap threshold set to 1");
|
||||
}
|
||||
System.out.println("\nWhat is the maximum number of CDR3 alpha/beta overlap wells to attempt matching?");
|
||||
highThreshold = sc.nextInt();
|
||||
if(highThreshold < lowThreshold) {
|
||||
highThreshold = lowThreshold;
|
||||
System.out.println("Value for high occupancy overlap threshold must be >= low overlap threshold");
|
||||
System.out.println("Value for high occupancy overlap threshold set to " + lowThreshold);
|
||||
}
|
||||
System.out.println("What is the minimum percentage of a sequence's wells in alpha/beta overlap to attempt matching? (0 - 100)");
|
||||
minOverlapPercent = sc.nextInt();
|
||||
if (minOverlapPercent < 0 || minOverlapPercent > 100) {
|
||||
System.out.println("Value outside range. Minimum occupancy overlap percentage set to 0");
|
||||
}
|
||||
System.out.println("\nWhat is the maximum difference in alpha/beta occupancy to attempt matching?");
|
||||
maxOccupancyDiff = sc.nextInt();
|
||||
if (maxOccupancyDiff < 0) {
|
||||
maxOccupancyDiff = 0;
|
||||
System.out.println("Maximum allowable difference in alpha/beta occupancy must be nonnegative");
|
||||
System.out.println("Maximum allowable difference in alpha/beta occupancy set to 0");
|
||||
}
|
||||
} catch (InputMismatchException ex) {
|
||||
System.out.println(ex);
|
||||
sc.next();
|
||||
}
|
||||
assert graphFilename != null;
|
||||
//check if this is the same graph we already have in memory.
|
||||
GraphWithMapData data;
|
||||
if(graphFilename.equals(BiGpairSEQ.getGraphFilename())) {
|
||||
data = BiGpairSEQ.getGraphInMemory();
|
||||
}
|
||||
else {
|
||||
GraphDataObjectReader dataReader = new GraphDataObjectReader(graphFilename);
|
||||
data = dataReader.getData();
|
||||
if(BiGpairSEQ.cacheGraph()) {
|
||||
BiGpairSEQ.setGraphInMemory(data, graphFilename);
|
||||
}
|
||||
}
|
||||
//simulate matching
|
||||
MatchingResult results = Simulator.matchCDR3s(data, graphFilename, lowThreshold, highThreshold, maxOccupancyDiff,
|
||||
minOverlapPercent, true);
|
||||
//write results to file
|
||||
assert filename != null;
|
||||
MatchingFileWriter writer = new MatchingFileWriter(filename, results);
|
||||
System.out.println("Writing results to file");
|
||||
writer.writeResultsToFile();
|
||||
System.out.println("Results written to file: " + filename);
|
||||
}
|
||||
|
||||
///////
|
||||
//Rewrite this to fit new matchCDR3 method with file I/O
|
||||
///////
|
||||
// public static void matchCellsCDR1(){
|
||||
// /*
|
||||
// The idea here is that we'll get the CDR3 alpha/beta matches first. Then we'll try to match CDR3s to CDR1s by
|
||||
// looking at the top two matches for each CDR3. If CDR3s in the same cell simply swap CDR1s, we assume a correct
|
||||
// match
|
||||
// */
|
||||
// String filename = null;
|
||||
// String preliminaryResultsFilename = null;
|
||||
// String cellFile = null;
|
||||
// String plateFile = null;
|
||||
// Integer lowThresholdCDR3 = 0;
|
||||
// Integer highThresholdCDR3 = Integer.MAX_VALUE;
|
||||
// Integer maxOccupancyDiffCDR3 = 96; //no filtering if max difference is all wells by default
|
||||
// Integer minOverlapPercentCDR3 = 0; //no filtering if min percentage is zero by default
|
||||
// Integer lowThresholdCDR1 = 0;
|
||||
// Integer highThresholdCDR1 = Integer.MAX_VALUE;
|
||||
// boolean outputCDR3Matches = false;
|
||||
// try {
|
||||
// System.out.println("\nSimulated experiment requires a cell sample file and a sample plate file.");
|
||||
// System.out.print("Please enter name of an existing cell sample file: ");
|
||||
// cellFile = sc.next();
|
||||
// System.out.print("Please enter name of an existing sample plate file: ");
|
||||
// plateFile = sc.next();
|
||||
// System.out.println("The matching results will be written to a file.");
|
||||
// System.out.print("Please enter a name for the output file: ");
|
||||
// filename = sc.next();
|
||||
// System.out.println("What is the minimum number of CDR3 alpha/beta overlap wells to attempt matching?");
|
||||
// lowThresholdCDR3 = sc.nextInt();
|
||||
// if(lowThresholdCDR3 < 1){
|
||||
// throw new InputMismatchException("Minimum value for low threshold is 1");
|
||||
// }
|
||||
// System.out.println("What is the maximum number of CDR3 alpha/beta overlap wells to attempt matching?");
|
||||
// highThresholdCDR3 = sc.nextInt();
|
||||
// System.out.println("What is the maximum difference in CDR3 alpha/beta occupancy to attempt matching?");
|
||||
// maxOccupancyDiffCDR3 = sc.nextInt();
|
||||
// System.out.println("What is the minimum CDR3 overlap percentage to attempt matching? (0 - 100)");
|
||||
// minOverlapPercentCDR3 = sc.nextInt();
|
||||
// if (minOverlapPercentCDR3 < 0 || minOverlapPercentCDR3 > 100) {
|
||||
// throw new InputMismatchException("Value outside range. Minimum percent set to 0");
|
||||
// }
|
||||
// System.out.println("What is the minimum number of CDR3/CDR1 overlap wells to attempt matching?");
|
||||
// lowThresholdCDR1 = sc.nextInt();
|
||||
// if(lowThresholdCDR1 < 1){
|
||||
// throw new InputMismatchException("Minimum value for low threshold is 1");
|
||||
// }
|
||||
// System.out.println("What is the maximum number of CDR3/CDR1 overlap wells to attempt matching?");
|
||||
// highThresholdCDR1 = sc.nextInt();
|
||||
// System.out.println("Matching CDR3s to CDR1s requires first matching CDR3 alpha/betas.");
|
||||
// System.out.println("Output a file for CDR3 alpha/beta match results as well?");
|
||||
// System.out.print("Please enter y/n: ");
|
||||
// String ans = sc.next();
|
||||
// Pattern pattern = Pattern.compile("(?:yes|y)", Pattern.CASE_INSENSITIVE);
|
||||
// Matcher matcher = pattern.matcher(ans);
|
||||
// if(matcher.matches()){
|
||||
// outputCDR3Matches = true;
|
||||
// System.out.println("Please enter filename for CDR3 alpha/beta match results");
|
||||
// preliminaryResultsFilename = sc.next();
|
||||
// System.out.println("CDR3 alpha/beta matches will be output to file");
|
||||
// }
|
||||
// else{
|
||||
// System.out.println("CDR3 alpha/beta matches will not be output to file");
|
||||
// }
|
||||
// } catch (InputMismatchException ex) {
|
||||
// System.out.println(ex);
|
||||
// sc.next();
|
||||
// }
|
||||
// CellFileReader cellReader = new CellFileReader(cellFile);
|
||||
// PlateFileReader plateReader = new PlateFileReader(plateFile);
|
||||
// Plate plate = new Plate(plateReader.getFilename(), plateReader.getWells());
|
||||
// if (cellReader.getCells().size() == 0){
|
||||
// System.out.println("No cell sample found.");
|
||||
// System.out.println("Returning to main menu.");
|
||||
// }
|
||||
// else if(plate.getWells().size() == 0){
|
||||
// System.out.println("No sample plate found.");
|
||||
// System.out.println("Returning to main menu.");
|
||||
//
|
||||
// }
|
||||
// else{
|
||||
// if(highThresholdCDR3 >= plate.getSize()){
|
||||
// highThresholdCDR3 = plate.getSize() - 1;
|
||||
// }
|
||||
// if(highThresholdCDR1 >= plate.getSize()){
|
||||
// highThresholdCDR1 = plate.getSize() - 1;
|
||||
// }
|
||||
// List<Integer[]> cells = cellReader.getCells();
|
||||
// MatchingResult preliminaryResults = Simulator.matchCDR3s(cells, plate, lowThresholdCDR3, highThresholdCDR3,
|
||||
// maxOccupancyDiffCDR3, minOverlapPercentCDR3, true);
|
||||
// MatchingResult[] results = Simulator.matchCDR1s(cells, plate, lowThresholdCDR1,
|
||||
// highThresholdCDR1, preliminaryResults);
|
||||
// MatchingFileWriter writer = new MatchingFileWriter(filename + "_FirstPass", results[0]);
|
||||
// writer.writeResultsToFile();
|
||||
// writer = new MatchingFileWriter(filename + "_SecondPass", results[1]);
|
||||
// writer.writeResultsToFile();
|
||||
// if(outputCDR3Matches){
|
||||
// writer = new MatchingFileWriter(preliminaryResultsFilename, preliminaryResults);
|
||||
// writer.writeResultsToFile();
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
private static void mainOptions(){
|
||||
boolean backToMain = false;
|
||||
while(!backToMain) {
|
||||
System.out.println("\n--------------OPTIONS---------------");
|
||||
System.out.println("1) Turn " + getOnOff(!BiGpairSEQ.cacheCells()) + " cell sample file caching");
|
||||
System.out.println("2) Turn " + getOnOff(!BiGpairSEQ.cachePlate()) + " plate file caching");
|
||||
System.out.println("3) Turn " + getOnOff(!BiGpairSEQ.cacheGraph()) + " graph/data file caching");
|
||||
System.out.println("4) Turn " + getOnOff(!BiGpairSEQ.outputBinary()) + " serialized binary graph output");
|
||||
System.out.println("5) Turn " + getOnOff(!BiGpairSEQ.outputGraphML()) + " GraphML graph output");
|
||||
System.out.println("6) Maximum weight matching algorithm options");
|
||||
System.out.println("0) Return to main menu");
|
||||
try {
|
||||
input = sc.nextInt();
|
||||
switch (input) {
|
||||
case 1 -> BiGpairSEQ.setCacheCells(!BiGpairSEQ.cacheCells());
|
||||
case 2 -> BiGpairSEQ.setCachePlate(!BiGpairSEQ.cachePlate());
|
||||
case 3 -> BiGpairSEQ.setCacheGraph(!BiGpairSEQ.cacheGraph());
|
||||
case 4 -> BiGpairSEQ.setOutputBinary(!BiGpairSEQ.outputBinary());
|
||||
case 5 -> BiGpairSEQ.setOutputGraphML(!BiGpairSEQ.outputGraphML());
|
||||
case 6 -> algorithmOptions();
|
||||
case 0 -> backToMain = true;
|
||||
default -> System.out.println("Invalid input");
|
||||
}
|
||||
} catch (InputMismatchException ex) {
|
||||
System.out.println(ex);
|
||||
sc.next();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Helper function for printing menu items in mainOptions(). Returns a string based on the value of parameter.
|
||||
*
|
||||
* @param b - a boolean value
|
||||
* @return String "on" if b is true, "off" if b is false
|
||||
*/
|
||||
private static String getOnOff(boolean b) {
|
||||
if (b) { return "on";}
|
||||
else { return "off"; }
|
||||
}
|
||||
|
||||
private static void algorithmOptions(){
|
||||
boolean backToOptions = false;
|
||||
while(!backToOptions) {
|
||||
System.out.println("\n---------ALGORITHM OPTIONS----------");
|
||||
System.out.println("1) Use scaling algorithm by Duan and Su.");
|
||||
System.out.println("2) Use LEDA book algorithm with Fibonacci heap priority queue");
|
||||
System.out.println("3) Use LEDA book algorithm with pairing heap priority queue");
|
||||
System.out.println("0) Return to Options menu");
|
||||
try {
|
||||
input = sc.nextInt();
|
||||
switch (input) {
|
||||
case 1 -> System.out.println("This option is not yet implemented. Choose another.");
|
||||
case 2 -> {
|
||||
BiGpairSEQ.setFibonacciHeap();
|
||||
System.out.println("MWM algorithm set to LEDA with Fibonacci heap");
|
||||
backToOptions = true;
|
||||
}
|
||||
case 3 -> {
|
||||
BiGpairSEQ.setPairingHeap();
|
||||
System.out.println("MWM algorithm set to LEDA with pairing heap");
|
||||
backToOptions = true;
|
||||
}
|
||||
case 0 -> backToOptions = true;
|
||||
default -> System.out.println("Invalid input");
|
||||
}
|
||||
} catch (InputMismatchException ex) {
|
||||
System.out.println(ex);
|
||||
sc.next();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private static void acknowledge(){
|
||||
System.out.println("This program simulates BiGpairSEQ, a graph theory based adaptation");
|
||||
System.out.println("of the pairSEQ algorithm for pairing T cell receptor sequences.");
|
||||
System.out.println();
|
||||
System.out.println("For full documentation, view readme.md file distributed with this code");
|
||||
System.out.println("or visit https://gitea.ejsf.synology.me/efischer/BiGpairSEQ.");
|
||||
System.out.println();
|
||||
System.out.println("pairSEQ citation:");
|
||||
System.out.println("Howie, B., Sherwood, A. M., et. al.");
|
||||
System.out.println("High-throughput pairing of T cell receptor alpha and beta sequences.");
|
||||
System.out.println("Sci. Transl. Med. 7, 301ra131 (2015)");
|
||||
System.out.println();
|
||||
System.out.println("BiGpairSEQ_Sim by Eugene Fischer, 2021-2022");
|
||||
}
|
||||
}
|
||||
3
src/main/java/META-INF/MANIFEST.MF
Normal file
3
src/main/java/META-INF/MANIFEST.MF
Normal file
@@ -0,0 +1,3 @@
|
||||
Manifest-Version: 1.0
|
||||
Main-Class: BiGpairSEQ
|
||||
|
||||
@@ -7,13 +7,10 @@ import java.nio.file.Files;
|
||||
import java.nio.file.Path;
|
||||
import java.nio.file.StandardOpenOption;
|
||||
import java.util.List;
|
||||
import java.util.regex.Pattern;
|
||||
|
||||
|
||||
public class MatchingFileWriter {
|
||||
|
||||
private String filename;
|
||||
private String sourceFileName;
|
||||
private List<String> comments;
|
||||
private List<String> headers;
|
||||
private List<List<String>> allResults;
|
||||
@@ -23,7 +20,6 @@ public class MatchingFileWriter {
|
||||
filename = filename + ".csv";
|
||||
}
|
||||
this.filename = filename;
|
||||
this.sourceFileName = result.getSourceFileName();
|
||||
this.comments = result.getComments();
|
||||
this.headers = result.getHeaders();
|
||||
this.allResults = result.getAllResults();
|
||||
|
||||
@@ -1,18 +1,41 @@
|
||||
import java.time.Duration;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
|
||||
public class MatchingResult {
|
||||
private String sourceFile;
|
||||
private List<String> comments;
|
||||
private List<String> headers;
|
||||
private List<List<String>> allResults;
|
||||
private Map<Integer, Integer> matchMap;
|
||||
private Duration time;
|
||||
|
||||
public MatchingResult(String sourceFileName, List<String> comments, List<String> headers, List<List<String>> allResults, Map<Integer, Integer>matchMap, Duration time){
|
||||
this.sourceFile = sourceFileName;
|
||||
this.comments = comments;
|
||||
private final Map<String, String> metadata;
|
||||
private final List<String> comments;
|
||||
private final List<String> headers;
|
||||
private final List<List<String>> allResults;
|
||||
private final Map<Integer, Integer> matchMap;
|
||||
private final Duration time;
|
||||
|
||||
public MatchingResult(Map<String, String> metadata, List<String> headers,
|
||||
List<List<String>> allResults, Map<Integer, Integer>matchMap, Duration time){
|
||||
/*
|
||||
* POSSIBLE KEYS FOR METADATA MAP ARE:
|
||||
* sample plate filename *
|
||||
* graph filename *
|
||||
* well populations *
|
||||
* total alphas found *
|
||||
* total betas found *
|
||||
* high overlap threshold
|
||||
* low overlap threshold
|
||||
* maximum occupancy difference
|
||||
* minimum overlap percent
|
||||
* pairing attempt rate
|
||||
* correct pairing count
|
||||
* incorrect pairing count
|
||||
* pairing error rate
|
||||
* simulation time
|
||||
*/
|
||||
this.metadata = metadata;
|
||||
this.comments = new ArrayList<>();
|
||||
for (String key : metadata.keySet()) {
|
||||
comments.add(key +": " + metadata.get(key));
|
||||
}
|
||||
this.headers = headers;
|
||||
this.allResults = allResults;
|
||||
this.matchMap = matchMap;
|
||||
@@ -20,6 +43,8 @@ public class MatchingResult {
|
||||
|
||||
}
|
||||
|
||||
public Map<String, String> getMetadata() {return metadata;}
|
||||
|
||||
public List<String> getComments() {
|
||||
return comments;
|
||||
}
|
||||
@@ -40,7 +65,32 @@ public class MatchingResult {
|
||||
return time;
|
||||
}
|
||||
|
||||
public String getSourceFileName() {
|
||||
return sourceFile;
|
||||
public String getPlateFilename() {
|
||||
return metadata.get("sample plate filename");
|
||||
}
|
||||
|
||||
public String getGraphFilename() {
|
||||
return metadata.get("graph filename");
|
||||
}
|
||||
|
||||
public Integer[] getWellPopulations() {
|
||||
List<Integer> wellPopulations = new ArrayList<>();
|
||||
String popString = metadata.get("well populations");
|
||||
for (String p : popString.split(", ")) {
|
||||
wellPopulations.add(Integer.parseInt(p));
|
||||
}
|
||||
Integer[] popArray = new Integer[wellPopulations.size()];
|
||||
return wellPopulations.toArray(popArray);
|
||||
}
|
||||
|
||||
public Integer getAlphaCount() {
|
||||
return Integer.parseInt(metadata.get("total alpha count"));
|
||||
}
|
||||
|
||||
public Integer getBetaCount() {
|
||||
return Integer.parseInt(metadata.get("total beta count"));
|
||||
}
|
||||
|
||||
//put in the rest of these methods following the same pattern
|
||||
|
||||
}
|
||||
|
||||
@@ -1,24 +1,28 @@
|
||||
import java.util.*;
|
||||
|
||||
|
||||
/*
|
||||
TODO: Implement exponential distribution using inversion method - DONE
|
||||
TODO: Implement discrete frequency distributions using Vose's Alias Method
|
||||
*/
|
||||
|
||||
import java.util.*;
|
||||
|
||||
public class Plate {
|
||||
private String sourceFile;
|
||||
private List<List<Integer[]>> wells;
|
||||
private Random rand = new Random();
|
||||
private final Random rand = BiGpairSEQ.getRand();
|
||||
private int size;
|
||||
private double error;
|
||||
private Integer[] concentrations;
|
||||
private Integer[] populations;
|
||||
private double stdDev;
|
||||
private double lambda;
|
||||
boolean exponential = false;
|
||||
|
||||
|
||||
public Plate (int size, double error, Integer[] concentrations, double stdDev) {
|
||||
public Plate(int size, double error, Integer[] populations) {
|
||||
this.size = size;
|
||||
this.error = error;
|
||||
this.concentrations = concentrations;
|
||||
this.stdDev = stdDev;
|
||||
this.populations = populations;
|
||||
wells = new ArrayList<>();
|
||||
}
|
||||
|
||||
@@ -26,25 +30,39 @@ public class Plate {
|
||||
this.sourceFile = sourceFileName;
|
||||
this.wells = wells;
|
||||
this.size = wells.size();
|
||||
|
||||
List<Integer> concentrations = new ArrayList<>();
|
||||
for (List<Integer[]> w: wells) {
|
||||
if(!concentrations.contains(w.size())){
|
||||
concentrations.add(w.size());
|
||||
}
|
||||
}
|
||||
this.populations = new Integer[concentrations.size()];
|
||||
for (int i = 0; i < this.populations.length; i++) {
|
||||
this.populations[i] = concentrations.get(i);
|
||||
}
|
||||
}
|
||||
|
||||
public void fillWells(String sourceFileName, List<Integer[]> cells) {
|
||||
public void fillWellsExponential(String sourceFileName, List<Integer[]> cells, double lambda){
|
||||
this.lambda = lambda;
|
||||
exponential = true;
|
||||
sourceFile = sourceFileName;
|
||||
int numSections = concentrations.length;
|
||||
int numSections = populations.length;
|
||||
int section = 0;
|
||||
double m;
|
||||
int n;
|
||||
while (section < numSections){
|
||||
for (int i = 0; i < (size / numSections); i++) {
|
||||
List<Integer[]> well = new ArrayList<>();
|
||||
for (int j = 0; j < concentrations[section]; j++) {
|
||||
for (int j = 0; j < populations[section]; j++) {
|
||||
do {
|
||||
m = (rand.nextGaussian() * stdDev) + (cells.size() / 2);
|
||||
//inverse transform sampling: for random number u in [0,1), x = log(1-u) / (-lambda)
|
||||
m = (Math.log10((1 - rand.nextDouble()))/(-lambda)) * Math.sqrt(cells.size());
|
||||
} while (m >= cells.size() || m < 0);
|
||||
n = (int) Math.floor(m);
|
||||
Integer[] cellToAdd = cells.get(n).clone();
|
||||
for(int k = 0; k < cellToAdd.length; k++){
|
||||
if(Math.abs(rand.nextDouble()) < error){//error applied to each peptide
|
||||
if(Math.abs(rand.nextDouble()) < error){//error applied to each seqeunce
|
||||
cellToAdd[k] = -1;
|
||||
}
|
||||
}
|
||||
@@ -56,8 +74,37 @@ public class Plate {
|
||||
}
|
||||
}
|
||||
|
||||
public Integer[] getConcentrations(){
|
||||
return concentrations;
|
||||
public void fillWells(String sourceFileName, List<Integer[]> cells, double stdDev) {
|
||||
this.stdDev = stdDev;
|
||||
sourceFile = sourceFileName;
|
||||
int numSections = populations.length;
|
||||
int section = 0;
|
||||
double m;
|
||||
int n;
|
||||
while (section < numSections){
|
||||
for (int i = 0; i < (size / numSections); i++) {
|
||||
List<Integer[]> well = new ArrayList<>();
|
||||
for (int j = 0; j < populations[section]; j++) {
|
||||
do {
|
||||
m = (rand.nextGaussian() * stdDev) + (cells.size() / 2);
|
||||
} while (m >= cells.size() || m < 0);
|
||||
n = (int) Math.floor(m);
|
||||
Integer[] cellToAdd = cells.get(n).clone();
|
||||
for(int k = 0; k < cellToAdd.length; k++){
|
||||
if(Math.abs(rand.nextDouble()) < error){//error applied to each sequence
|
||||
cellToAdd[k] = -1;
|
||||
}
|
||||
}
|
||||
well.add(cellToAdd);
|
||||
}
|
||||
wells.add(well);
|
||||
}
|
||||
section++;
|
||||
}
|
||||
}
|
||||
|
||||
public Integer[] getPopulations(){
|
||||
return populations;
|
||||
}
|
||||
|
||||
public int getSize(){
|
||||
@@ -68,6 +115,10 @@ public class Plate {
|
||||
return stdDev;
|
||||
}
|
||||
|
||||
public boolean isExponential(){return exponential;}
|
||||
|
||||
public double getLambda(){return lambda;}
|
||||
|
||||
public double getError() {
|
||||
return error;
|
||||
}
|
||||
@@ -76,30 +127,30 @@ public class Plate {
|
||||
return wells;
|
||||
}
|
||||
|
||||
//returns a map of the counts of the peptide at cell index pIndex, in all wells
|
||||
public Map<Integer, Integer> assayWellsPeptideP(int... pIndices){
|
||||
return this.assayWellsPeptideP(0, size, pIndices);
|
||||
//returns a map of the counts of the sequence at cell index sIndex, in all wells
|
||||
public Map<Integer, Integer> assayWellsSequenceS(int... sIndices){
|
||||
return this.assayWellsSequenceS(0, size, sIndices);
|
||||
}
|
||||
|
||||
//returns a map of the counts of the peptide at cell index pIndex, in a specific well
|
||||
public Map<Integer, Integer> assayWellsPeptideP(int n, int... pIndices) { return this.assayWellsPeptideP(n, n+1, pIndices);}
|
||||
//returns a map of the counts of the sequence at cell index sIndex, in a specific well
|
||||
public Map<Integer, Integer> assayWellsSequenceS(int n, int... sIndices) { return this.assayWellsSequenceS(n, n+1, sIndices);}
|
||||
|
||||
//returns a map of the counts of the peptide at cell index pIndex, in a range of wells
|
||||
public Map<Integer, Integer> assayWellsPeptideP(int start, int end, int... pIndices) {
|
||||
//returns a map of the counts of the sequence at cell index sIndex, in a range of wells
|
||||
public Map<Integer, Integer> assayWellsSequenceS(int start, int end, int... sIndices) {
|
||||
Map<Integer,Integer> assay = new HashMap<>();
|
||||
for(int pIndex: pIndices){
|
||||
for(int pIndex: sIndices){
|
||||
for(int i = start; i < end; i++){
|
||||
countPeptides(assay, wells.get(i), pIndex);
|
||||
countSequences(assay, wells.get(i), pIndex);
|
||||
}
|
||||
}
|
||||
return assay;
|
||||
}
|
||||
//For the peptides at cell indices pIndices, counts number of unique peptides in the given well into the given map
|
||||
private void countPeptides(Map<Integer, Integer> wellMap, List<Integer[]> well, int... pIndices) {
|
||||
//For the sequences at cell indices sIndices, counts number of unique sequences in the given well into the given map
|
||||
private void countSequences(Map<Integer, Integer> wellMap, List<Integer[]> well, int... sIndices) {
|
||||
for(Integer[] cell : well) {
|
||||
for(int pIndex: pIndices){
|
||||
if(cell[pIndex] != -1){
|
||||
wellMap.merge(cell[pIndex], 1, (oldValue, newValue) -> oldValue + newValue);
|
||||
for(int sIndex: sIndices){
|
||||
if(cell[sIndex] != -1){
|
||||
wellMap.merge(cell[sIndex], 1, (oldValue, newValue) -> oldValue + newValue);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7,17 +7,17 @@ import java.nio.file.Files;
|
||||
import java.nio.file.Path;
|
||||
import java.nio.file.StandardOpenOption;
|
||||
import java.util.*;
|
||||
import java.util.regex.Pattern;
|
||||
|
||||
public class PlateFileWriter {
|
||||
private int size;
|
||||
private List<List<Integer[]>> wells;
|
||||
private double stdDev;
|
||||
private double lambda;
|
||||
private Double error;
|
||||
private String filename;
|
||||
private String sourceFileName;
|
||||
private String[] headers;
|
||||
private List<Integer> concentrations;
|
||||
private Integer[] populations;
|
||||
private boolean isExponential = false;
|
||||
|
||||
public PlateFileWriter(String filename, Plate plate) {
|
||||
if(!filename.matches(".*\\.csv")){
|
||||
@@ -26,11 +26,17 @@ public class PlateFileWriter {
|
||||
this.filename = filename;
|
||||
this.sourceFileName = plate.getSourceFileName();
|
||||
this.size = plate.getSize();
|
||||
this.isExponential = plate.isExponential();
|
||||
if(isExponential) {
|
||||
this.lambda = plate.getLambda();
|
||||
}
|
||||
else{
|
||||
this.stdDev = plate.getStdDev();
|
||||
}
|
||||
this.error = plate.getError();
|
||||
this.wells = plate.getWells();
|
||||
this.concentrations = Arrays.asList(plate.getConcentrations());
|
||||
concentrations.sort(Comparator.reverseOrder());
|
||||
this.populations = plate.getPopulations();
|
||||
Arrays.sort(populations);
|
||||
}
|
||||
|
||||
public void writePlateFile(){
|
||||
@@ -51,28 +57,35 @@ public class PlateFileWriter {
|
||||
}
|
||||
}
|
||||
|
||||
//this took forever
|
||||
List<List<String>> rows = new ArrayList<>();
|
||||
List<String> tmp = new ArrayList<>();
|
||||
for(int i = 0; i < wellsAsStrings.size(); i++){//List<Integer[]> w: wells){
|
||||
tmp.add("well " + (i+1));
|
||||
}
|
||||
rows.add(tmp);
|
||||
for(int row = 0; row < maxLength; row++){
|
||||
tmp = new ArrayList<>();
|
||||
for(List<String> c: wellsAsStrings){
|
||||
tmp.add(c.get(row));
|
||||
}
|
||||
rows.add(tmp);
|
||||
}
|
||||
StringBuilder concen = new StringBuilder();
|
||||
for(Integer i: concentrations){
|
||||
concen.append(i.toString());
|
||||
concen.append(" ");
|
||||
}
|
||||
String concenString = concen.toString();
|
||||
// //this took forever and I don't use it
|
||||
// //if I wanted to use it, I'd replace printer.printRecords(wellsAsStrings) with printer.printRecords(rows)
|
||||
// List<List<String>> rows = new ArrayList<>();
|
||||
// List<String> tmp = new ArrayList<>();
|
||||
// for(int i = 0; i < wellsAsStrings.size(); i++){//List<Integer[]> w: wells){
|
||||
// tmp.add("well " + (i+1));
|
||||
// }
|
||||
// rows.add(tmp);
|
||||
// for(int row = 0; row < maxLength; row++){
|
||||
// tmp = new ArrayList<>();
|
||||
// for(List<String> c: wellsAsStrings){
|
||||
// tmp.add(c.get(row));
|
||||
// }
|
||||
// rows.add(tmp);
|
||||
// }
|
||||
|
||||
CSVFormat plateFileFormat = CSVFormat.Builder.create().setCommentMarker('#').build();
|
||||
//make string out of populations array
|
||||
StringBuilder populationsStringBuilder = new StringBuilder();
|
||||
populationsStringBuilder.append(populations[0].toString());
|
||||
for(int i = 1; i < populations.length; i++){
|
||||
populationsStringBuilder.append(", ");
|
||||
populationsStringBuilder.append(populations[i].toString());
|
||||
}
|
||||
String wellPopulationsString = populationsStringBuilder.toString();
|
||||
|
||||
//set CSV format
|
||||
CSVFormat plateFileFormat = CSVFormat.Builder.create()
|
||||
.setCommentMarker('#')
|
||||
.build();
|
||||
|
||||
try(BufferedWriter writer = Files.newBufferedWriter(Path.of(filename), StandardOpenOption.CREATE_NEW);
|
||||
CSVPrinter printer = new CSVPrinter(writer, plateFileFormat);
|
||||
@@ -81,8 +94,13 @@ public class PlateFileWriter {
|
||||
printer.printComment("Each row represents one well on the plate.");
|
||||
printer.printComment("Plate size: " + size);
|
||||
printer.printComment("Error rate: " + error);
|
||||
printer.printComment("Concentrations: " + concenString);
|
||||
printer.printComment("Well populations: " + wellPopulationsString);
|
||||
if(isExponential){
|
||||
printer.printComment("Lambda: " + lambda);
|
||||
}
|
||||
else {
|
||||
printer.printComment("Std. dev.: " + stdDev);
|
||||
}
|
||||
printer.printRecords(wellsAsStrings);
|
||||
} catch(IOException ex){
|
||||
System.out.println("Could not make new file named "+filename);
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,395 +0,0 @@
|
||||
import org.apache.commons.cli.*;
|
||||
|
||||
import java.util.List;
|
||||
import java.util.Scanner;
|
||||
import java.util.InputMismatchException;
|
||||
import java.util.regex.Matcher;
|
||||
import java.util.regex.Pattern;
|
||||
|
||||
//
|
||||
public class UserInterface {
|
||||
|
||||
final static Scanner sc = new Scanner(System.in);
|
||||
static int input;
|
||||
static boolean quit = false;
|
||||
|
||||
public static void main(String[] args) {
|
||||
|
||||
if(args.length != 0){
|
||||
Options options = new Options();
|
||||
Option matchCDR3 = Option.builder("m")
|
||||
.longOpt("match")
|
||||
.desc("Match CDR3s. Requires a cell sample file and any number of plate files.")
|
||||
.build();
|
||||
options.addOption(matchCDR3);
|
||||
Option inputCells = Option.builder("c")
|
||||
.longOpt("cellfile")
|
||||
.hasArg()
|
||||
.argName("file")
|
||||
.desc("The cell sample file used for matching")
|
||||
.required().build();
|
||||
options.addOption(inputCells);
|
||||
Option lowThresh = Option.builder("low")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.desc("Sets the minimum occupancy overlap to attempt matching")
|
||||
.required().build();
|
||||
options.addOption(lowThresh);
|
||||
Option highThresh = Option.builder("high")
|
||||
.hasArg()
|
||||
.argName("number")
|
||||
.desc("Sets the maximum occupancy overlap to attempt matching")
|
||||
.required().build();
|
||||
options.addOption(highThresh);
|
||||
Option inputPlates = Option.builder("p")
|
||||
.longOpt("platefiles")
|
||||
.hasArgs()
|
||||
.desc("Plate files to match")
|
||||
.required().build();
|
||||
options.addOption(inputPlates);
|
||||
|
||||
CommandLineParser parser = new DefaultParser();
|
||||
try {
|
||||
CommandLine line = parser.parse(options, args);
|
||||
if(line.hasOption("m")){
|
||||
String cellFile = line.getOptionValue("c");
|
||||
Integer lowThreshold = Integer.valueOf(line.getOptionValue(lowThresh));
|
||||
Integer highThreshold = Integer.valueOf(line.getOptionValue(highThresh));
|
||||
for(String plate: line.getOptionValues("p")) {
|
||||
matchCDR3s(cellFile, plate, lowThreshold, highThreshold);
|
||||
}
|
||||
}
|
||||
}
|
||||
catch (ParseException exp) {
|
||||
System.err.println("Parsing failed. Reason: " + exp.getMessage());
|
||||
}
|
||||
}
|
||||
else {
|
||||
while (!quit) {
|
||||
System.out.println("\nALPHA/BETA T-CELL RECEPTOR MATCHING SIMULATOR");
|
||||
System.out.println("Please select an option:");
|
||||
System.out.println("1) Generate a population of distinct cells");
|
||||
System.out.println("2) Generate a sample plate of T cells");
|
||||
System.out.println("3) Simulate CDR3 alpha/beta T cell matching");
|
||||
System.out.println("4) Simulate CDR3/CDR1 T cell matching");
|
||||
System.out.println("5) Acknowledgements");
|
||||
System.out.println("0) Exit");
|
||||
try {
|
||||
input = sc.nextInt();
|
||||
switch (input) {
|
||||
case 1 -> makeCells();
|
||||
case 2 -> makePlate();
|
||||
case 3 -> matchCells();
|
||||
case 4 -> matchCellsCDR1();
|
||||
case 5 -> acknowledge();
|
||||
case 0 -> quit = true;
|
||||
default -> throw new InputMismatchException("Invalid input.");
|
||||
}
|
||||
} catch (InputMismatchException ex) {
|
||||
System.out.println(ex);
|
||||
sc.next();
|
||||
}
|
||||
}
|
||||
sc.close();
|
||||
}
|
||||
}
|
||||
|
||||
private static void makeCells() {
|
||||
String filename = null;
|
||||
Integer numCells = 0;
|
||||
Integer cdr1Freq = 1;
|
||||
try {
|
||||
System.out.println("\nSimulated T-Cells consist of integer values representing:\n" +
|
||||
"* a pair of alpha and beta CDR3 peptides (unique within simulated population)\n" +
|
||||
"* a pair of alpha and beta CDR1 peptides (not necessarily unique).");
|
||||
System.out.println("\nThe cells will be written to a file.");
|
||||
System.out.print("Please enter a file name: ");
|
||||
filename = sc.next();
|
||||
System.out.println("CDR3 sequences are more diverse than CDR1 sequences.");
|
||||
System.out.println("Please enter the factor by which distinct CDR3s outnumber CDR1s: ");
|
||||
cdr1Freq = sc.nextInt();
|
||||
System.out.print("Please enter the number of T-cells to generate: ");
|
||||
numCells = sc.nextInt();
|
||||
if(numCells <= 0){
|
||||
throw new InputMismatchException("Number of cells must be a positive integer.");
|
||||
}
|
||||
} catch (InputMismatchException ex) {
|
||||
System.out.println(ex);
|
||||
sc.next();
|
||||
}
|
||||
CellSample sample = Simulator.generateCellSample(numCells, cdr1Freq);
|
||||
CellFileWriter writer = new CellFileWriter(filename, sample);
|
||||
writer.writeCellsToFile();
|
||||
}
|
||||
|
||||
private static void makeCells(String filename, Integer numCells, Integer cdr1Freq){
|
||||
CellSample sample = Simulator.generateCellSample(numCells, cdr1Freq);
|
||||
CellFileWriter writer = new CellFileWriter(filename, sample);
|
||||
writer.writeCellsToFile();
|
||||
}
|
||||
|
||||
private static void makePlate(String cellFile, String filename, Double stdDev,
|
||||
Integer numWells, Integer numSections,
|
||||
Integer[] concentrations, Double dropOutRate){
|
||||
CellFileReader cellReader = new CellFileReader(cellFile);
|
||||
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations, stdDev);
|
||||
samplePlate.fillWells(cellReader.getFilename(), cellReader.getCells());
|
||||
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
|
||||
writer.writePlateFile();
|
||||
}
|
||||
|
||||
//method to output a CSV of
|
||||
private static void makePlate() {
|
||||
String cellFile = null;
|
||||
String filename = null;
|
||||
Double stdDev = 0.0;
|
||||
Integer numWells = 0;
|
||||
Integer numSections = 0;
|
||||
Integer[] concentrations = {1};
|
||||
Double dropOutRate = 0.0;
|
||||
boolean poisson = false;
|
||||
try {
|
||||
System.out.println("\nMaking a sample plate requires a population of distinct cells");
|
||||
System.out.println("Please enter name of an existing cell sample file: ");
|
||||
cellFile = sc.next();
|
||||
System.out.println("\nThe sample plate will be written to file");
|
||||
System.out.print("Please enter a name for the output file: ");
|
||||
filename = sc.next();
|
||||
System.out.println("Select T-cell frequency distribution function");
|
||||
System.out.println("1) Poisson");
|
||||
System.out.println("2) Gaussian");
|
||||
System.out.println("(Note: wider distributions are more memory intensive to match)");
|
||||
System.out.print("Enter selection value: ");
|
||||
input = sc.nextInt();
|
||||
switch(input) {
|
||||
case 1:
|
||||
poisson = true;
|
||||
break;
|
||||
case 2:
|
||||
System.out.println("How many distinct T-cells within one standard deviation of peak frequency?");
|
||||
System.out.println("(Note: wider distributions are more memory intensive to match)");
|
||||
stdDev = sc.nextDouble();
|
||||
if(stdDev <= 0.0){
|
||||
throw new InputMismatchException("Value must be positive.");
|
||||
}
|
||||
break;
|
||||
default:
|
||||
System.out.println("Invalid input. Defaulting to Poisson.");
|
||||
poisson = true;
|
||||
}
|
||||
System.out.print("Number of wells on plate: ");
|
||||
numWells = sc.nextInt();
|
||||
if(numWells < 1){
|
||||
throw new InputMismatchException("No wells on plate");
|
||||
}
|
||||
System.out.println("The plate can be evenly sectioned to allow multiple concentrations of T-cells/well");
|
||||
System.out.println("How many sections would you like to make (minimum 1)?");
|
||||
numSections = sc.nextInt();
|
||||
if(numSections < 1) {
|
||||
throw new InputMismatchException("Too few sections.");
|
||||
}
|
||||
else if (numSections > numWells) {
|
||||
throw new InputMismatchException("Cannot have more sections than wells.");
|
||||
}
|
||||
int i = 1;
|
||||
concentrations = new Integer[numSections];
|
||||
while(numSections > 0) {
|
||||
System.out.print("Enter number of T-cells per well in section " + i +": ");
|
||||
concentrations[i - 1] = sc.nextInt();
|
||||
i++;
|
||||
numSections--;
|
||||
}
|
||||
System.out.println("Errors in amplification can induce a well dropout rate for peptides");
|
||||
System.out.print("Enter well dropout rate (0.0 to 1.0): ");
|
||||
dropOutRate = sc.nextDouble();
|
||||
if(dropOutRate < 0.0 || dropOutRate > 1.0) {
|
||||
throw new InputMismatchException("The well dropout rate must be in the range [0.0, 1.0]");
|
||||
}
|
||||
}catch(InputMismatchException ex){
|
||||
System.out.println(ex);
|
||||
sc.next();
|
||||
}
|
||||
CellFileReader cellReader = new CellFileReader(cellFile);
|
||||
if(poisson) {
|
||||
stdDev = Math.sqrt(cellReader.getCellCount()); //gaussian with square root of elements approximates poisson
|
||||
}
|
||||
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations, stdDev);
|
||||
samplePlate.fillWells(cellReader.getFilename(), cellReader.getCells());
|
||||
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
|
||||
writer.writePlateFile();
|
||||
}
|
||||
|
||||
private static void matchCDR3s(String cellFile, String plateFile, Integer lowThreshold, Integer highThreshold){
|
||||
CellFileReader cellReader = new CellFileReader(cellFile);
|
||||
PlateFileReader plateReader = new PlateFileReader(plateFile);
|
||||
Plate plate = new Plate(plateReader.getFilename(), plateReader.getWells());
|
||||
if (cellReader.getCells().size() == 0){
|
||||
System.exit(0);
|
||||
}
|
||||
else if(plate.getWells().size() == 0){
|
||||
System.exit(0);
|
||||
|
||||
}
|
||||
else{
|
||||
if(highThreshold >= plate.getSize()){
|
||||
highThreshold = plate.getSize() - 1;
|
||||
}
|
||||
List<Integer[]> cells = cellReader.getCells();
|
||||
MatchingResult results = Simulator.matchCDR3s(cells, plate, lowThreshold, highThreshold, false);
|
||||
//result writer
|
||||
MatchingFileWriter writer = new MatchingFileWriter("", results);
|
||||
writer.writeErrorRateToTerminal();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
private static void matchCells() {
|
||||
String filename = null;
|
||||
String cellFile = null;
|
||||
String plateFile = null;
|
||||
Integer lowThreshold = 0;
|
||||
Integer highThreshold = Integer.MAX_VALUE;
|
||||
try {
|
||||
System.out.println("\nSimulated experiment requires a cell sample file and a sample plate file.");
|
||||
System.out.print("Please enter name of an existing cell sample file: ");
|
||||
cellFile = sc.next();
|
||||
System.out.print("Please enter name of an existing sample plate file: ");
|
||||
plateFile = sc.next();
|
||||
System.out.println("The matching results will be written to a file.");
|
||||
System.out.print("Please enter a name for the output file: ");
|
||||
filename = sc.next();
|
||||
System.out.println("What is the minimum number of alpha/beta overlap wells to attempt matching?");
|
||||
lowThreshold = sc.nextInt();
|
||||
if(lowThreshold < 1){
|
||||
throw new InputMismatchException("Minimum value for low threshold is 1");
|
||||
}
|
||||
System.out.println("What is the maximum number of alpha/beta overlap wells to attempt matching?");
|
||||
highThreshold = sc.nextInt();
|
||||
} catch (InputMismatchException ex) {
|
||||
System.out.println(ex);
|
||||
sc.next();
|
||||
}
|
||||
CellFileReader cellReader = new CellFileReader(cellFile);
|
||||
PlateFileReader plateReader = new PlateFileReader(plateFile);
|
||||
Plate plate = new Plate(plateReader.getFilename(), plateReader.getWells());
|
||||
if (cellReader.getCells().size() == 0){
|
||||
System.out.println("No cell sample found.");
|
||||
System.out.println("Returning to main menu.");
|
||||
}
|
||||
else if(plate.getWells().size() == 0){
|
||||
System.out.println("No sample plate found.");
|
||||
System.out.println("Returning to main menu.");
|
||||
|
||||
}
|
||||
else{
|
||||
if(highThreshold >= plate.getSize()){
|
||||
highThreshold = plate.getSize() - 1;
|
||||
}
|
||||
List<Integer[]> cells = cellReader.getCells();
|
||||
MatchingResult results = Simulator.matchCDR3s(cells, plate, lowThreshold, highThreshold, true);
|
||||
//result writer
|
||||
MatchingFileWriter writer = new MatchingFileWriter(filename, results);
|
||||
writer.writeResultsToFile();
|
||||
}
|
||||
}
|
||||
|
||||
public static void matchCellsCDR1(){
|
||||
/*
|
||||
The idea here is that we'll get the CDR3 alpha/beta matches first. Then we'll try to match CDR3s to CDR1s by
|
||||
looking at the top two matches for each CDR3. If CDR3s in the same cell simply swap CDR1s, we assume a correct
|
||||
match
|
||||
*/
|
||||
String filename = null;
|
||||
String preliminaryResultsFilename = null;
|
||||
String cellFile = null;
|
||||
String plateFile = null;
|
||||
Integer lowThresholdCDR3 = 0;
|
||||
Integer highThresholdCDR3 = Integer.MAX_VALUE;
|
||||
Integer lowThresholdCDR1 = 0;
|
||||
Integer highThresholdCDR1 = Integer.MAX_VALUE;
|
||||
boolean outputCDR3Matches = false;
|
||||
try {
|
||||
System.out.println("\nSimulated experiment requires a cell sample file and a sample plate file.");
|
||||
System.out.print("Please enter name of an existing cell sample file: ");
|
||||
cellFile = sc.next();
|
||||
System.out.print("Please enter name of an existing sample plate file: ");
|
||||
plateFile = sc.next();
|
||||
System.out.println("The matching results will be written to a file.");
|
||||
System.out.print("Please enter a name for the output file: ");
|
||||
filename = sc.next();
|
||||
System.out.println("What is the minimum number of CDR3 alpha/beta overlap wells to attempt matching?");
|
||||
lowThresholdCDR3 = sc.nextInt();
|
||||
if(lowThresholdCDR3 < 1){
|
||||
throw new InputMismatchException("Minimum value for low threshold is 1");
|
||||
}
|
||||
System.out.println("What is the maximum number of CDR3 alpha/beta overlap wells to attempt matching?");
|
||||
highThresholdCDR3 = sc.nextInt();
|
||||
System.out.println("What is the minimum number of CDR3/CDR1 overlap wells to attempt matching?");
|
||||
lowThresholdCDR1 = sc.nextInt();
|
||||
if(lowThresholdCDR1 < 1){
|
||||
throw new InputMismatchException("Minimum value for low threshold is 1");
|
||||
}
|
||||
System.out.println("What is the maximum number of CDR3/CDR1 overlap wells to attempt matching?");
|
||||
highThresholdCDR1 = sc.nextInt();
|
||||
System.out.println("Matching CDR3s to CDR1s requires first matching CDR3 alpha/betas.");
|
||||
System.out.println("Output a file for CDR3 alpha/beta match results as well?");
|
||||
System.out.print("Please enter y/n: ");
|
||||
String ans = sc.next();
|
||||
Pattern pattern = Pattern.compile("(?:yes|y)", Pattern.CASE_INSENSITIVE);
|
||||
Matcher matcher = pattern.matcher(ans);
|
||||
if(matcher.matches()){
|
||||
outputCDR3Matches = true;
|
||||
System.out.println("Please enter filename for CDR3 alpha/beta match results");
|
||||
preliminaryResultsFilename = sc.next();
|
||||
System.out.println("CDR3 alpha/beta matches will be output to file");
|
||||
}
|
||||
else{
|
||||
System.out.println("CDR3 alpha/beta matches will not be output to file");
|
||||
}
|
||||
} catch (InputMismatchException ex) {
|
||||
System.out.println(ex);
|
||||
sc.next();
|
||||
}
|
||||
CellFileReader cellReader = new CellFileReader(cellFile);
|
||||
PlateFileReader plateReader = new PlateFileReader(plateFile);
|
||||
Plate plate = new Plate(plateReader.getFilename(), plateReader.getWells());
|
||||
if (cellReader.getCells().size() == 0){
|
||||
System.out.println("No cell sample found.");
|
||||
System.out.println("Returning to main menu.");
|
||||
}
|
||||
else if(plate.getWells().size() == 0){
|
||||
System.out.println("No sample plate found.");
|
||||
System.out.println("Returning to main menu.");
|
||||
|
||||
}
|
||||
else{
|
||||
if(highThresholdCDR3 >= plate.getSize()){
|
||||
highThresholdCDR3 = plate.getSize() - 1;
|
||||
}
|
||||
if(highThresholdCDR1 >= plate.getSize()){
|
||||
highThresholdCDR1 = plate.getSize() - 1;
|
||||
}
|
||||
List<Integer[]> cells = cellReader.getCells();
|
||||
MatchingResult preliminaryResults = Simulator.matchCDR3s(cells, plate, lowThresholdCDR3, highThresholdCDR3, true);
|
||||
MatchingResult[] results = Simulator.matchCDR1s(cells, plate, lowThresholdCDR1,
|
||||
highThresholdCDR1, preliminaryResults);
|
||||
MatchingFileWriter writer = new MatchingFileWriter(filename + "_FirstPass", results[0]);
|
||||
writer.writeResultsToFile();
|
||||
writer = new MatchingFileWriter(filename + "_SecondPass", results[1]);
|
||||
writer.writeResultsToFile();
|
||||
if(outputCDR3Matches){
|
||||
writer = new MatchingFileWriter(preliminaryResultsFilename, preliminaryResults);
|
||||
writer.writeResultsToFile();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private static void acknowledge(){
|
||||
System.out.println("Simulation based on:");
|
||||
System.out.println("Howie, B., Sherwood, A. M., et. al.");
|
||||
System.out.println("High-throughput pairing of T cell receptor alpha and beta sequences.");
|
||||
System.out.println("Sci. Transl. Med. 7, 301ra131 (2015)");
|
||||
System.out.println("");
|
||||
System.out.println("Simulation by Eugene Fischer, 2021");
|
||||
}
|
||||
}
|
||||
23
src/main/java/Vertex.java
Normal file
23
src/main/java/Vertex.java
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
|
||||
public class Vertex {
|
||||
private final Integer vertexLabel;
|
||||
private final Integer sequence;
|
||||
private final Integer occupancy;
|
||||
|
||||
public Vertex(Integer vertexLabel, Integer sequence, Integer occupancy) {
|
||||
this.vertexLabel = vertexLabel;
|
||||
this.sequence = sequence;
|
||||
this.occupancy = occupancy;
|
||||
}
|
||||
|
||||
public Integer getVertexLabel() { return vertexLabel; }
|
||||
|
||||
public Integer getSequence() {
|
||||
return sequence;
|
||||
}
|
||||
|
||||
public Integer getOccupancy() {
|
||||
return occupancy;
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user