264 Commits
v1.1 ... master

Author SHA1 Message Date
eugenefischer
4099ec2623 update ToDos 2025-04-15 15:50:55 -05:00
eugenefischer
7744586e79 change frequency of garbage collection requests 2025-04-10 20:07:34 -05:00
eugenefischer
83eff0d1e7 remove output to stdout that was added for testing 2025-04-10 15:08:33 -05:00
eugenefischer
d1810c453d Even more efficient graph creation (my initial scheme, but this time without accidentally changing what's in the sequence records) 2025-04-10 15:03:10 -05:00
eugenefischer
187401f2d6 More efficient graph creation 2025-04-10 14:06:11 -05:00
eugenefischer
678ce99424 iterate over vertex wells correctly 2025-04-10 13:34:04 -05:00
eugenefischer
c21e375303 fix concurrent modification bug 2025-04-10 13:33:47 -05:00
eugenefischer
57fe9c1619 Update graph modification functions to work with edges directly 2025-04-10 12:42:19 -05:00
eugenefischer
e1888a99c6 refactor to construct the bipartite graph directly, rather than by using an adjacency matrix and a graph generator. 2025-04-10 11:47:15 -05:00
eugenefischer
bcf5a4c749 change artifact details 2025-04-10 11:05:08 -05:00
eugenefischer
81d8a12765 dependency update stuff 2025-04-10 10:54:05 -05:00
eugenefischer
b5c0568e22 Add dependencies 2025-04-10 10:53:42 -05:00
eugenefischer
b7597cff2a update readme and add Zipf exponent option to CLI 2025-04-09 16:16:46 -05:00
eugenefischer
7bbeaf7dad update readme 2025-04-09 14:40:49 -05:00
eugenefischer
945b967382 update readme 2025-04-09 14:39:46 -05:00
eugenefischer
a43ee469ea implement Zipf distribution 2025-04-09 14:32:02 -05:00
eugenefischer
161a52aa89 update readme 2025-04-09 11:52:03 -05:00
eugenefischer
9b2ad9da09 update readme 2025-04-09 11:42:10 -05:00
eugenefischer
30a3f6e33d update citations 2025-04-09 11:36:06 -05:00
eugenefischer
8cc1f19da1 update links 2025-04-09 11:31:05 -05:00
eugenefischer
3efa5c26d8 fix index link 2025-04-09 11:22:13 -05:00
eugenefischer
e686d4957b disable selection of the scaling integer weight MWM algorithm via the interactive interface 2025-04-09 11:20:52 -05:00
eugenefischer
fbc0496675 update readme and default heap type 2025-04-09 11:18:21 -05:00
eugenefischer
0071cafbbd Rough implementation, missing final dual adjustment step, and may have other bugs as well as it does not yet output a maximum weight matching 2025-04-09 10:17:13 -05:00
eugenefischer
3d302cf8ad initial commit of stub of integer weight scaling algorithm 2025-03-27 13:42:27 -05:00
eugenefischer
5f5d77b0a4 update citations 2023-04-09 20:59:09 -05:00
eugenefischer
af32be85ee update TODO 2023-04-09 20:49:39 -05:00
eugenefischer
58cdf9ae93 Lookback AA implementation, doesn't currently work 2023-04-09 20:45:03 -05:00
eugenefischer
202ad4c834 mention forward/reverse auction algorithms 2023-04-09 20:42:58 -05:00
eugenefischer
96d49d0034 clarifying comment 2023-04-09 19:48:43 -05:00
eugenefischer
d8e5f7ece0 update todo 2023-04-09 13:00:41 -05:00
eugenefischer
9c81d919b4 add disclosure section 2023-01-18 16:28:16 -06:00
eugenefischer
70b08e7c22 Bugfixes and streamlining 2022-10-22 17:59:01 -05:00
eugenefischer
44158d264c Correct sequence count 2022-10-22 16:16:32 -05:00
eugenefischer
e97c2989db Add dropout rate calculation to read-in of data from plate file (this may slow down read-in by a lot) 2022-10-22 16:04:41 -05:00
eugenefischer
f7709ada73 Change order of metadata comments 2022-10-22 15:50:35 -05:00
eugenefischer
25b37eff48 renamed to MaximumIntegerWeightBipartiteAuctionMatching 2022-10-22 15:00:22 -05:00
eugenefischer
fbbb5a8792 Update comments 2022-10-22 14:59:43 -05:00
eugenefischer
4b9d7f8494 Add option to select matching algorithm type, rename types in output 2022-10-22 14:59:24 -05:00
eugenefischer
0de12a3a12 Refactor to use selected algorithm type 2022-10-22 14:58:40 -05:00
eugenefischer
3c2ec9002e Add field for algorithm type, methods to set algorithm type 2022-10-22 14:13:31 -05:00
eugenefischer
bcf3af5a83 Update algorithm type names 2022-10-22 14:10:00 -05:00
eugenefischer
fcca22a2f0 Rename class, modify bidding to include marginal item value 2022-10-22 13:18:43 -05:00
eugenefischer
910de0ce9d Fix typos 2022-10-21 13:46:10 -05:00
eugenefischer
ef349ea5f6 Correctly store matching weight 2022-10-14 18:44:56 -05:00
eugenefischer
174db66c46 Clean up comments 2022-10-14 18:31:32 -05:00
eugenefischer
b3273855a6 Test simpler source/target differentiation 2022-10-14 18:11:21 -05:00
eugenefischer
51c1bc2551 Skip edges with zero weight 2022-10-14 18:09:34 -05:00
eugenefischer
f7d522e95d Comment out old MWM algorithm, add auction algorithm 2022-10-14 17:38:07 -05:00
eugenefischer
5f0c089b0a add getter for matchingWeight 2022-10-14 17:37:40 -05:00
eugenefischer
d3066095d9 add getter/setter for potential 2022-10-14 17:32:37 -05:00
eugenefischer
55a5d9a892 Making fields final 2022-10-14 17:32:21 -05:00
eugenefischer
49708f2f8a Initial auction algorithm implementation 2022-10-14 17:31:59 -05:00
eugenefischer
c7934ca498 update TODO 2022-10-03 21:30:32 -05:00
eugenefischer
8f0ed91cb7 revert previous commit 2022-10-01 18:36:41 -05:00
eugenefischer
40bc2ce88d New linking test 2022-10-01 18:35:58 -05:00
eugenefischer
a5a17d1f76 Revert previous commit 2022-10-01 18:23:31 -05:00
eugenefischer
0f3ab0fdd7 Section link test 2022-10-01 18:22:55 -05:00
eugenefischer
01596ef43a Rename sections 2022-10-01 18:16:08 -05:00
eugenefischer
cda25a2c62 Update performance section and TODO 2022-10-01 18:12:33 -05:00
eugenefischer
bde6da3076 fix typo 2022-10-01 16:12:21 -05:00
eugenefischer
2eede214c0 fix typo 2022-10-01 16:11:32 -05:00
eugenefischer
98ce708825 Remove questionable claim, reorder simulation experiments 2022-10-01 15:46:22 -05:00
eugenefischer
e7e85a4542 Comment out questionable claim 2022-10-01 15:44:29 -05:00
eugenefischer
c0dd2d31f2 Update version number 2022-10-01 15:21:33 -05:00
eugenefischer
cf103c5223 Add flag to enable p-value calculation 2022-10-01 14:36:22 -05:00
eugenefischer
26f66fe139 Remove outdated comments 2022-10-01 14:35:35 -05:00
eugenefischer
89295777ef Update output example 2022-10-01 14:30:46 -05:00
eugenefischer
99c92e6eb5 Update TODO 2022-10-01 14:21:23 -05:00
eugenefischer
b82176517c Update TOC, command line options 2022-10-01 13:59:03 -05:00
eugenefischer
0657db5653 tyoo 2022-10-01 13:44:17 -05:00
eugenefischer
9f0ac227e2 Clarify steps and reasoning behind the algorithm 2022-10-01 13:43:14 -05:00
eugenefischer
54896bc47f Correct typo, remove redundant information 2022-10-01 13:01:44 -05:00
eugenefischer
b19a4d37c2 Update readme with newer results, new menu options 2022-10-01 13:00:33 -05:00
eugenefischer
457d643477 Make calculation of p-values optional, defaulting to off 2022-09-30 03:17:58 -05:00
eugenefischer
593dd6c60f Add sample cell filename, cell sample size, and sample plate size to metadata 2022-09-30 02:58:15 -05:00
eugenefischer
b8aeeb988f Add sequence dropout rate to metadata output 2022-09-30 00:33:41 -05:00
eugenefischer
b9b13fb75e Rename dropout rate flag 2022-09-29 23:58:08 -05:00
eugenefischer
289220e0d0 Remove statements about pre-filtering types. Can add that back if I ever actually parameterize that. 2022-09-29 22:10:42 -05:00
eugenefischer
19badac92b Correct misstatement of filter condition in Algorithm section 2022-09-29 18:32:42 -05:00
eugenefischer
633334a1b8 Update Theory section, add Contents and Algorithm section. 2022-09-29 18:30:07 -05:00
eugenefischer
e308e47578 Correct error in comments 2022-09-29 18:29:43 -05:00
eugenefischer
133984276f Change access modifiers and add count of wells removed to output 2022-09-29 16:03:10 -05:00
eugenefischer
ec6713a1c0 Implement filtering for wells with anomalous read counts 2022-09-29 16:03:10 -05:00
097590cf21 Add method to remove a well from the SequenceRecord (git committed as past self due to IDE misclick) 2022-09-29 16:03:10 -05:00
eugenefischer
f1e4c4f194 Remove duplicate output statements 2022-09-29 01:05:36 -05:00
eugenefischer
b6218c3ed3 update version 2022-09-29 00:53:11 -05:00
eugenefischer
756e5572b9 update readme 2022-09-29 00:00:19 -05:00
eugenefischer
c30167d5ec Change real sequence collision so it isn't biased toward sequences in the earlier wells. 2022-09-28 23:15:55 -05:00
eugenefischer
a19525f5bb update readme 2022-09-28 23:01:59 -05:00
eugenefischer
e5803defa3 Bug fix, add comments 2022-09-28 18:09:47 -05:00
eugenefischer
34dc2a5721 Add real sequence collision rate 2022-09-28 17:54:55 -05:00
eugenefischer
fd106a0d73 Add real sequence collision rate 2022-09-28 17:46:09 -05:00
eugenefischer
22faad3414 Add real sequence collision rate 2022-09-28 17:45:09 -05:00
eugenefischer
0b36e2b742 Rewrite countSequences to allow for collision with real sequences on misreads 2022-09-28 17:44:26 -05:00
eugenefischer
9dacd8cd34 Add real sequence collision rate 2022-09-28 17:43:21 -05:00
eugenefischer
89687fa849 Add real sequence collision rate, make fields final 2022-09-28 17:43:06 -05:00
eugenefischer
fb443fe958 Revert "Add getCell and getRandomCell methods"
This reverts commit adebe1542e.
2022-09-28 14:36:20 -05:00
eugenefischer
adebe1542e Add getCell and getRandomCell methods 2022-09-28 13:49:50 -05:00
eugenefischer
882fbfffc6 Purge old code 2022-09-28 13:40:13 -05:00
eugenefischer
a88cfb8b0d Add read counts for individual wells to graphml output 2022-09-28 13:38:38 -05:00
eugenefischer
deed98e79d Bugfix 2022-09-28 12:58:14 -05:00
eugenefischer
1a35600f50 Add method to get read count from individual wells 2022-09-28 12:57:45 -05:00
eugenefischer
856063529b Read depth simulation is now compatible with plate caching 2022-09-28 12:47:00 -05:00
eugenefischer
b7c86f20b3 Add read depth attributes to graphml output 2022-09-28 03:01:52 -05:00
eugenefischer
3a47efd361 Update TODO 2022-09-28 03:01:03 -05:00
eugenefischer
58bb04c431 Remove redundant toString() calls 2022-09-28 02:08:17 -05:00
eugenefischer
610da68262 Refactor Vertex class to use SequenceRecords 2022-09-28 00:58:44 -05:00
eugenefischer
9973473cc6 Make serializable and implement getWellOccupancies method 2022-09-28 00:58:02 -05:00
eugenefischer
8781afd74c Reorder conditional 2022-09-28 00:57:06 -05:00
eugenefischer
88b6c79caa Refactor to simplify graph creation code 2022-09-28 00:07:59 -05:00
eugenefischer
35a519d499 update TODO 2022-09-27 22:20:57 -05:00
eugenefischer
5bd1e568a6 update TODO 2022-09-27 15:08:16 -05:00
eugenefischer
4ad1979c18 Add read depth simulation options to CLI 2022-09-27 15:05:50 -05:00
eugenefischer
423c9d5c93 Add read depth simulation options to CLI 2022-09-27 14:35:55 -05:00
eugenefischer
7c3c95ab4b update TODO in readme 2022-09-27 14:11:21 -05:00
eugenefischer
d71a99555c clean up metadata 2022-09-27 12:15:12 -05:00
eugenefischer
2bf2a9f5f7 Add comments 2022-09-27 11:51:51 -05:00
eugenefischer
810abdb705 Add read depth parameters to output metadata 2022-09-27 11:13:12 -05:00
eugenefischer
f7b3c133bf Add filtering based on occupancy/read count discrepancy 2022-09-26 23:39:18 -05:00
eugenefischer
14fcfe1ff3 spacing 2022-09-26 23:38:56 -05:00
eugenefischer
70fec95a00 Bug fix 2022-09-26 23:17:18 -05:00
eugenefischer
077af3b46e Clear plate in memory when simulating read depth 2022-09-26 23:17:10 -05:00
eugenefischer
db99c74810 Rework read depth simulation to allow edge weight calculations to work as expected. (This changes sample plate in memory, so caching the sample plate is incompatible) 2022-09-26 23:03:23 -05:00
eugenefischer
13a1af1f71 placeholder values until CLI is updated to support read depth simulation 2022-09-26 19:43:29 -05:00
eugenefischer
199c81f983 Implement read count for vertices 2022-09-26 19:42:19 -05:00
eugenefischer
19a2a35f07 Refactor plate assay methods to use maps passed as parameters rather than returning maps 2022-09-26 17:00:25 -05:00
eugenefischer
36c628cde5 Add code to simulate read depth 2022-09-26 16:52:56 -05:00
eugenefischer
1ddac63b0a Add exception handling 2022-09-26 14:28:35 -05:00
eugenefischer
e795b4cdd0 Add read depth option to interface 2022-09-26 14:25:47 -05:00
eugenefischer
60cf6775c2 notes toward command line read depth option 2022-09-26 14:25:30 -05:00
eugenefischer
8a8c89c9ba revert options menu 2022-09-26 14:24:58 -05:00
eugenefischer
86371668d5 Add menu option to activate simulation of read depth and sequence read errors 2022-09-26 13:47:19 -05:00
eugenefischer
d81ab25a68 Comment: need to update this when read count is implemented 2022-09-26 13:46:53 -05:00
eugenefischer
02c8e6aacb Refactor sequences to be strings instead of integers, to make simulating read errors easier 2022-09-26 13:37:48 -05:00
eugenefischer
f84dfb2b4b Method stub for simulating read depth 2022-09-26 00:43:13 -05:00
eugenefischer
184278b72e Add fields for simulating read depth. Also a priority queue for lookback auctions 2022-09-26 00:42:55 -05:00
eugenefischer
489369f533 Add flag to simulate read depth 2022-09-26 00:42:23 -05:00
eugenefischer
fbee591273 Change indentation 2022-09-25 22:36:02 -05:00
eugenefischer
603a999b59 Update readme 2022-09-25 22:35:52 -05:00
eugenefischer
c3df4b12ab Update readme with read depth TODO 2022-09-25 21:50:59 -05:00
eugenefischer
d1a56c3578 Hand-merge of some things from Dev_Vertex branch that didn't make it in for some reason 2022-09-25 19:07:25 -05:00
eugenefischer
16daf02dd6 Merge branch 'Dev_Vertex'
# Conflicts:
#	src/main/java/GraphModificationFunctions.java
#	src/main/java/GraphWithMapData.java
#	src/main/java/Simulator.java
#	src/main/java/Vertex.java
2022-09-25 18:33:26 -05:00
eugenefischer
04a077da2e update Readme 2022-09-25 18:24:12 -05:00
eugenefischer
740835f814 fix typo 2022-09-25 17:47:07 -05:00
eugenefischer
8a77d53f1f Output sequence counts before and after pre-filtering (currently pre-filtering only sequences present in all wells) 2022-09-25 17:20:50 -05:00
eugenefischer
58fa140ee5 add comments 2022-09-25 16:10:17 -05:00
eugenefischer
475bbf3107 Sort vertex lists by vertex label before making adjacency matrix 2022-09-25 15:54:28 -05:00
eugenefischer
4f2fa4cbbe Pre-filter saturating sequences only. Retaining singletons seems to improve matching accuracy in high sample rate test (well populations 10% of total cell sample size) 2022-09-25 15:19:56 -05:00
eugenefischer
58d418e44b Pre-filter saturating sequences only. Retaining singletons seems to improve matching accuracy in high sample rate test (well populations 10% of total cell sample size) 2022-09-25 15:06:46 -05:00
eugenefischer
1971a96467 Remove pre-filtering of singleton and saturating sequences 2022-09-25 14:55:43 -05:00
eugenefischer
e699795521 Revert "by-hand merge of needed code from custom vertex branch"
This reverts commit 29b844afd2.
2022-09-25 14:34:31 -05:00
eugenefischer
bd6d010b0b Revert "update TODO"
This reverts commit a054c0c20a.
2022-09-25 14:34:31 -05:00
eugenefischer
61d1eb3eb1 Revert "Reword output message"
This reverts commit 63317f2aa0.
2022-09-25 14:34:31 -05:00
eugenefischer
cb41b45204 Revert "Reword option menu item"
This reverts commit 06e72314b0.
2022-09-25 14:34:31 -05:00
eugenefischer
a84d2e1bfe Revert "Add comment on map data encodng"
This reverts commit 73c83bf35d.
2022-09-25 14:34:31 -05:00
eugenefischer
7b61d2c0d7 Revert "update version number"
This reverts commit e4e5a1f979.
2022-09-25 14:34:31 -05:00
eugenefischer
56454417c0 Revert "Restore pre-filtering of singleton and saturating sequences"
This reverts commit 5c03909a11.
2022-09-25 14:34:31 -05:00
eugenefischer
8ee1c5903e Merge branch 'master' into Dev_Vertex
# Conflicts:
#	src/main/java/GraphMLFileReader.java
#	src/main/java/InteractiveInterface.java
#	src/main/java/Simulator.java
2022-09-25 14:18:56 -05:00
eugenefischer
5c03909a11 Restore pre-filtering of singleton and saturating sequences 2022-09-22 01:39:13 -05:00
eugenefischer
e4e5a1f979 update version number 2022-09-22 00:00:02 -05:00
eugenefischer
73c83bf35d Add comment on map data encodng 2022-09-21 21:46:00 -05:00
eugenefischer
06e72314b0 Reword option menu item 2022-09-21 21:43:47 -05:00
eugenefischer
63317f2aa0 Reword output message 2022-09-21 18:08:52 -05:00
eugenefischer
a054c0c20a update TODO 2022-09-21 16:50:00 -05:00
eugenefischer
29b844afd2 by-hand merge of needed code from custom vertex branch 2022-09-21 16:48:26 -05:00
eugenefischer
dea4972927 remove prefiltering of singletons and saturating sequences 2022-09-21 16:09:08 -05:00
eugenefischer
9ae38bf247 Fix bug in correct match counter 2022-09-21 15:59:23 -05:00
eugenefischer
3ba305abdb Update ToDo 2022-09-21 13:30:30 -05:00
eugenefischer
3707923398 Merge remote-tracking branch 'origin/master' 2022-09-21 13:16:52 -05:00
eugenefischer
cf771ce574 parameterized sequence indices 2022-09-21 13:15:49 -05:00
f980722b56 update TODO 2022-09-21 18:09:37 +00:00
1df86f01df parameterized sequence indices 2022-03-05 12:03:31 -06:00
96ba57d653 Remove singleton sequences from wells in initial filtering 2022-03-04 16:14:17 -06:00
b602fb02f1 Remove obsolete comments 2022-03-02 23:35:24 -06:00
325e1ebe2b Add data on randomized well population behavior 2022-03-02 23:21:56 -06:00
df047267ee Add data on randomized well population behavior 2022-03-02 22:54:17 -06:00
03e8d31210 Add data on randomized well population behavior 2022-03-02 18:55:19 -06:00
582dc3ef40 Update readme 2022-03-02 12:39:40 -06:00
4c872ed48e Add optional stdout print flags 2022-03-01 15:27:04 -06:00
3fc39302c7 Add detail to error message 2022-03-01 15:24:14 -06:00
578bdc0fbf clarify help menu text 2022-03-01 15:08:43 -06:00
8275cf7740 Check for finite pairing error rate 2022-03-01 09:01:53 -06:00
64209691f0 Check for finite pairing error rate 2022-03-01 09:00:58 -06:00
1886800873 update readme 2022-03-01 08:54:32 -06:00
bedf0894bc update readme 2022-03-01 08:45:40 -06:00
2ac3451842 update readme 2022-03-01 08:43:48 -06:00
67ec3f3764 update readme 2022-03-01 08:43:18 -06:00
b5a8b7e2d5 update readme 2022-03-01 08:41:57 -06:00
9fb3095f0f Clarify help text 2022-03-01 08:40:34 -06:00
25acf920c2 Add version information 2022-03-01 08:34:35 -06:00
f301327693 Update readme with -graphml flag 2022-03-01 08:24:43 -06:00
e04d2d6777 Fix typos in help menu 2022-03-01 08:16:06 -06:00
3e41afaa64 bugfix 2022-02-27 19:08:29 -06:00
bc5d67680d Add flag to print metadata to stdout 2022-02-27 17:36:23 -06:00
f2347e8fc2 check verbose flag 2022-02-27 17:35:50 -06:00
c8364d8a6e check verbose flag 2022-02-27 17:34:20 -06:00
6f5afbc6ec Update readme with CLI arguments 2022-02-27 17:01:12 -06:00
fb4d22e7a4 Update readme with CLI arguments 2022-02-27 17:00:54 -06:00
e10350c214 Update readme with CLI arguments 2022-02-27 16:56:58 -06:00
b1155f8100 Format -help CLI option 2022-02-27 16:53:46 -06:00
12b003a69f Add -help CLI option 2022-02-27 16:45:30 -06:00
32c5bcaaff Deactivate file I/O announcement for CLI 2022-02-27 16:16:24 -06:00
2485ac4cf6 Add getters to MatchingResult 2022-02-27 16:15:26 -06:00
05556bce0c Add units to metadata 2022-02-27 16:08:59 -06:00
a822f69ea4 Control verbose output 2022-02-27 16:07:17 -06:00
3d1f8668ee Control verbose output 2022-02-27 16:03:57 -06:00
40c743308b Initialize wells 2022-02-27 15:54:47 -06:00
5246cc4a0c Re-implement command line options 2022-02-27 15:35:07 -06:00
a5f7c0641d Refactor for better encapsulation with CellSamples 2022-02-27 14:51:53 -06:00
8ebfc1469f Refactor plate to fill its own wells in its constructor 2022-02-27 14:25:53 -06:00
b53f5f1cc0 Refactor plate to fill its own wells in its constructor 2022-02-27 14:17:16 -06:00
974d2d650c Refactor plate to fill its own wells in its constructor 2022-02-27 14:17:11 -06:00
6b5837e6ce Add Vose's alias method to to-dos 2022-02-27 11:46:11 -06:00
b4cc240048 Update Readme 2022-02-26 11:03:31 -06:00
ff72c9b359 Update Readme 2022-02-26 11:02:23 -06:00
88eb8aca50 Update Readme 2022-02-26 11:01:44 -06:00
98bf452891 Update Readme 2022-02-26 11:01:20 -06:00
c2db4f87c1 Update Readme 2022-02-26 11:00:18 -06:00
8935407ade Get rid of GraphML reader, those files are larger than serialized files 2022-02-26 10:38:10 -06:00
9fcc20343d Fix GraphML writer 2022-02-26 10:36:00 -06:00
817fe51708 Code cleanup 2022-02-26 09:56:46 -06:00
1ea68045ce Refactor cdr3 matching to use new Vertex class 2022-02-26 09:49:16 -06:00
75b2aa9553 testing graph attributes 2022-02-26 08:58:52 -06:00
b3dc10f287 add graph attributes to graphml writer 2022-02-26 08:15:48 -06:00
fb8d8d8785 make heap type an enum 2022-02-26 08:15:31 -06:00
ab437512e9 make Vertex serializable 2022-02-26 07:45:36 -06:00
7b03a3cce8 bugfix 2022-02-26 07:35:34 -06:00
f032d3e852 rewrite GraphML importer/exporter 2022-02-26 07:34:07 -06:00
b604b1d3cd Changing graph to use Vertex class 2022-02-26 06:19:08 -06:00
e4d094d796 Adding GraphML output to options menu 2022-02-24 17:22:07 -06:00
f385ebc31f Update vertex class 2022-02-24 16:25:01 -06:00
8745550e11 add MWM algorithm type to matching metadata 2022-02-24 16:24:48 -06:00
41805135b3 remove unused import 2022-02-24 16:04:30 -06:00
373a5e02f9 Refactor to make CellSample class more self-contained 2022-02-24 16:03:49 -06:00
7f18311054 fix typos 2022-02-24 15:55:32 -06:00
bcb816c3e6 Reformat TODO 2022-02-24 15:48:10 -06:00
dad0fd35fd Update readme to reflect wells with random population implemented 2022-02-24 15:47:08 -06:00
35d580cfcf Update readme to reflect wells with random population implemented 2022-02-24 15:45:03 -06:00
ab8d98ed81 Update readme to reflect new default caching behavior. 2022-02-24 15:39:15 -06:00
3d9890e16a Change GraphModificationFunctions to only save edges if graph data is cached 2022-02-24 15:32:27 -06:00
dd64ac2731 Change GraphModificationFunctions to interface 2022-02-24 15:18:09 -06:00
a5238624f1 Change default graph caching behavior to false 2022-02-24 15:14:28 -06:00
d8ba42b801 Fix Algorithm Options menu output 2022-02-24 14:59:08 -06:00
8edd89d784 Added heap type selection, fixed error handling 2022-02-24 14:48:19 -06:00
2829b88689 Update readme to reflect caching changes 2022-02-24 12:47:26 -06:00
108b0ec13f Improve options menu wording 2022-02-24 12:42:09 -06:00
a8b58d3f79 Output new setting when changing options 2022-02-24 12:38:15 -06:00
bf64d57731 implement option menu for file caching 2022-02-24 12:30:47 -06:00
c068c3db3c implement option menu for file caching 2022-02-23 20:35:31 -06:00
4bcda9b66c update readme 2022-02-23 13:22:04 -06:00
17ae763c6c Generate populations correctly 2022-02-23 10:37:40 -06:00
decdb147a9 Cache everything 2022-02-23 10:30:42 -06:00
74ffbfd8ac make everything use same random number generator 2022-02-23 09:29:21 -06:00
08699ce8ce Change output order to match interactive UI 2022-02-23 08:56:09 -06:00
69b0cc535c Error checking 2022-02-23 08:55:07 -06:00
e58f7b0a55 checking for possible divide by zero error. 2022-02-23 08:54:14 -06:00
dd2164c250 implement sample plates with random well populations 2022-02-23 08:14:17 -06:00
7323093bdc change "getRandomNumber" to "getRandomInt" for consistency. 2022-02-23 08:13:52 -06:00
f904cf6672 add more data caching code 2022-02-23 08:13:06 -06:00
3ccee9891b change "concentrations" to "populations" for consistency 2022-02-23 08:12:48 -06:00
40c2be1cfb create populations string correctly 2022-02-23 08:11:01 -06:00
4b597c4e5e remove old testing code 2022-02-23 08:10:35 -06:00
b2398531a3 Update readme 2022-02-23 05:11:36 +00:00
37 changed files with 4466 additions and 1029 deletions

1
.idea/.name generated Normal file
View File

@@ -0,0 +1 @@
BiGpairSEQ

View File

@@ -1,16 +1,27 @@
<component name="ArtifactManager">
<artifact type="jar" build-on-make="true" name="BiGpairSEQ_Sim:jar">
<artifact type="jar" name="BiGpairSEQ_Sim:jar">
<output-path>$PROJECT_DIR$/out/artifacts/BiGpairSEQ_Sim_jar</output-path>
<root id="archive" name="BiGpairSEQ_Sim.jar">
<element id="directory" name="META-INF">
<element id="file-copy" path="$PROJECT_DIR$/src/main/java/META-INF/MANIFEST.MF" />
<element id="file-copy" path="$PROJECT_DIR$/META-INF/MANIFEST.MF" />
</element>
<element id="module-output" name="BigPairSEQ" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-core/1.5.1/jgrapht-core-1.5.1.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.13/jheaps-0.13.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/commons-cli/commons-cli/1.5.0/commons-cli-1.5.0.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-csv/1.9.0/commons-csv-1.9.0.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jetbrains/annotations/23.0.0/annotations-23.0.0.jar" path-in-jar="/" />
<element id="module-output" name="BiGpairSEQ_Sim" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-core/1.5.2/jgrapht-core-1.5.2.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-rng-sampling/1.6/commons-rng-sampling-1.6.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-csv/1.14.0/commons-csv-1.14.0.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jetbrains/annotations/26.0.2/annotations-26.0.2.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-io/1.5.2/jgrapht-io-1.5.2.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-rng-simple/1.6/commons-rng-simple-1.6.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/commons-io/commons-io/2.18.0/commons-io-2.18.0.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-rng-core/1.6/commons-rng-core-1.6.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/commons-codec/commons-codec/1.18.0/commons-codec-1.18.0.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-rng-client-api/1.6/commons-rng-client-api-1.6.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/commons-cli/commons-cli/1.9.0/commons-cli-1.9.0.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-lang3/3.12.0/commons-lang3-3.12.0.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/antlr/antlr4-runtime/4.12.0/antlr4-runtime-4.12.0.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apfloat/apfloat/1.10.1/apfloat-1.10.1.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/apache/commons/commons-text/1.10.0/commons-text-1.10.0.jar" path-in-jar="/" />
<element id="extracted-dir" path="$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.14/jheaps-0.14.jar" path-in-jar="/" />
</root>
</artifact>
</component>

1
.idea/compiler.xml generated
View File

@@ -7,6 +7,7 @@
<sourceTestOutputDir name="target/generated-test-sources/test-annotations" />
<outputRelativeToContentRoot value="true" />
<module name="BigPairSEQ" />
<module name="BiGpairSEQ_Sim" />
</profile>
</annotationProcessing>
</component>

View File

@@ -1,20 +1,35 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="RemoteRepositoriesConfiguration">
<remote-repository>
<option name="id" value="my-internal-site" />
<option name="name" value="my-internal-site" />
<option name="url" value="https://myserver/repo" />
</remote-repository>
<remote-repository>
<option name="id" value="central" />
<option name="name" value="Central Repository" />
<option name="url" value="https://repo1.maven.org/maven2" />
</remote-repository>
<remote-repository>
<option name="id" value="central repo" />
<option name="name" value="central repo" />
<option name="url" value="https://repo1.maven.org/maven2/" />
</remote-repository>
<remote-repository>
<option name="id" value="central" />
<option name="name" value="Central Repository" />
<option name="url" value="https://repo.maven.apache.org/maven2" />
</remote-repository>
<remote-repository>
<option name="id" value="central" />
<option name="name" value="Maven Central repository" />
<option name="url" value="https://repo1.maven.org/maven2" />
</remote-repository>
<remote-repository>
<option name="id" value="jboss.community" />
<option name="name" value="JBoss Community repository" />
<option name="url" value="https://repository.jboss.org/nexus/content/repositories/public/" />
</remote-repository>
<remote-repository>
<option name="id" value="34d16bdc-85f0-48ee-8e8b-144091765be1" />
<option name="name" value="34d16bdc-85f0-48ee-8e8b-144091765be1" />
<option name="url" value="https://repository.mulesoft.org/nexus/content/repositories/public/" />
</remote-repository>
</component>
</project>

View File

@@ -1,8 +1,10 @@
<component name="libraryTable">
<library name="apache.commons.csv" type="repository">
<properties maven-id="org.apache.commons:commons-csv:1.9.0" />
<properties maven-id="org.apache.commons:commons-csv:1.14.0" />
<CLASSES>
<root url="jar://$MAVEN_REPOSITORY$/org/apache/commons/commons-csv/1.9.0/commons-csv-1.9.0.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/apache/commons/commons-csv/1.14.0/commons-csv-1.14.0.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/commons-io/commons-io/2.18.0/commons-io-2.18.0.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/commons-codec/commons-codec/1.18.0/commons-codec-1.18.0.jar!/" />
</CLASSES>
<JAVADOC />
<SOURCES />

View File

@@ -1,8 +1,8 @@
<component name="libraryTable">
<library name="commons.cli" type="repository">
<properties maven-id="commons-cli:commons-cli:1.5.0" />
<properties maven-id="commons-cli:commons-cli:1.9.0" />
<CLASSES>
<root url="jar://$MAVEN_REPOSITORY$/commons-cli/commons-cli/1.5.0/commons-cli-1.5.0.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/commons-cli/commons-cli/1.9.0/commons-cli-1.9.0.jar!/" />
</CLASSES>
<JAVADOC />
<SOURCES />

View File

@@ -1,9 +1,10 @@
<component name="libraryTable">
<library name="jgrapht.core" type="repository">
<properties maven-id="org.jgrapht:jgrapht-core:1.5.1" />
<properties maven-id="org.jgrapht:jgrapht-core:1.5.2" />
<CLASSES>
<root url="jar://$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-core/1.5.1/jgrapht-core-1.5.1.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.13/jheaps-0.13.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-core/1.5.2/jgrapht-core-1.5.2.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.14/jheaps-0.14.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/apfloat/apfloat/1.10.1/apfloat-1.10.1.jar!/" />
</CLASSES>
<JAVADOC />
<SOURCES />

View File

@@ -1,13 +1,14 @@
<component name="libraryTable">
<library name="jgrapht.io" type="repository">
<properties maven-id="org.jgrapht:jgrapht-io:1.5.1" />
<properties maven-id="org.jgrapht:jgrapht-io:1.5.2" />
<CLASSES>
<root url="jar://$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-io/1.5.1/jgrapht-io-1.5.1.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-core/1.5.1/jgrapht-core-1.5.1.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.13/jheaps-0.13.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/antlr/antlr4-runtime/4.8-1/antlr4-runtime-4.8-1.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/apache/commons/commons-text/1.8/commons-text-1.8.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/apache/commons/commons-lang3/3.9/commons-lang3-3.9.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-io/1.5.2/jgrapht-io-1.5.2.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/jgrapht/jgrapht-core/1.5.2/jgrapht-core-1.5.2.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/jheaps/jheaps/0.14/jheaps-0.14.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/apfloat/apfloat/1.10.1/apfloat-1.10.1.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/antlr/antlr4-runtime/4.12.0/antlr4-runtime-4.12.0.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/apache/commons/commons-text/1.10.0/commons-text-1.10.0.jar!/" />
<root url="jar://$MAVEN_REPOSITORY$/org/apache/commons/commons-lang3/3.12.0/commons-lang3-3.12.0.jar!/" />
</CLASSES>
<JAVADOC />
<SOURCES />

44
pom.xml
View File

@@ -5,7 +5,7 @@
<modelVersion>4.0.0</modelVersion>
<groupId>org.example</groupId>
<artifactId>TCellSim</artifactId>
<artifactId>BiGpairSEQ_Sim</artifactId>
<version>1.0-SNAPSHOT</version>
<build>
<plugins>
@@ -26,8 +26,48 @@
<version>RELEASE</version>
<scope>compile</scope>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.commons/commons-rng-simple -->
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-rng-simple</artifactId>
<version>1.6</version>
</dependency>
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-rng-sampling</artifactId>
<version>1.6</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.apache.commons/commons-csv -->
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-csv</artifactId>
<version>1.14.0</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.jgrapht/jgrapht-core -->
<dependency>
<groupId>org.jgrapht</groupId>
<artifactId>jgrapht-core</artifactId>
<version>1.5.2</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.jgrapht/jgrapht-io -->
<dependency>
<groupId>org.jgrapht</groupId>
<artifactId>jgrapht-io</artifactId>
<version>1.5.2</version>
</dependency>
<!-- https://mvnrepository.com/artifact/org.jheaps/jheaps -->
<dependency>
<groupId>org.jheaps</groupId>
<artifactId>jheaps</artifactId>
<version>0.14</version>
</dependency>
<!-- https://mvnrepository.com/artifact/commons-cli/commons-cli -->
<dependency>
<groupId>commons-cli</groupId>
<artifactId>commons-cli</artifactId>
<version>1.9.0</version>
</dependency>
</dependencies>
<properties>
<maven.compiler.source>11</maven.compiler.source>
<maven.compiler.target>11</maven.compiler.target>

635
readme.md
View File

@@ -1,37 +1,113 @@
# BiGpairSEQ SIMULATOR
## CONTENTS
1. [ABOUT](#about)
2. [THEORY](#theory)
3. [THE BiGpairSEQ ALGORITHM](#the-bigpairseq-algorithm)
4. [USAGE](#usage)
1. [RUNNING THE PROGRAM](#running-the-program)
2. [COMMAND LINE OPTIONS](#command-line-options)
3. [INTERACTIVE INTERFACE](#interactive-interface)
4. [INPUT/OUTPUT](#input-output)
1. [Cell Sample Files](#cell-sample-files)
2. [Sample Plate Files](#sample-plate-files)
3. [Graph/Data Files](#graph-data-files)
4. [Matching Results Files](#matching-results-files)
5. [RESULTS](#results)
1. [SAMPLE PLATES WITH VARYING NUMBERS OF CELLS PER WELL](#sample-plates-with-varying-numbers-of-cells-per-well)
2. [SIMULATING EXPERIMENTS FROM THE 2015 pairSEQ PAPER](#simulating-experiments-from-the-2015-pairseq-paper)
1. [EXPERIMENT 1](#experiment-1)
2. [EXPERIMENT 3](#experiment-3)
6. [CITATIONS](#citations)
7. [EXTERNAL LIBRARIES USED](#external-libraries-used)
8. [ACKNOWLEDGEMENTS](#acknowledgements)
9. [AUTHOR](#author)
10. [DISCLOSURE](#disclosure)
11. [TODO](#todo)
## ABOUT
This program simulates BiGpairSEQ (Bipartite Graph pairSEQ), a graph theory-based adaptation
of the pairSEQ algorithm (Howie, et al. 2015) for pairing T cell receptor sequences.
of the pairSEQ algorithm ([Howie, et al. 2015](#citations)) for pairing T cell receptor sequences.
## THEORY
Unlike pairSEQ, which calculates p-values for every TCR alpha/beta overlap and compares
against a null distribution, BiGpairSEQ does not do any statistical calculations
directly.
T cell receptors (TCRs) are encoded by pairs of sequences, alpha sequences (TCRAs) and beta sequences (TCRBs). These sequences
are extremely diverse; to the first approximation, this pair of sequences uniquely identifies a line of T cells.
BiGpairSEQ creates a [simple bipartite weighted graph](https://en.wikipedia.org/wiki/Bipartite_graph) representing the sample plate.
The distinct TCRA and TCRB sequences form the two sets of vertices. Every TCRA/TCRB pair that share a well
are connected by an edge, with the edge weight set to the number of wells in which both sequences appear.
(Sequences present in *all* wells are filtered out prior to creating the graph, as there is no signal in their occupancy pattern.)
The problem of pairing TCRA/TCRB sequences thus reduces to the "assignment problem" of finding a maximum weight
matching on a bipartite graph--the subset of vertex-disjoint edges whose weights sum to the maximum possible value.
As described in the original 2015 paper, pairSEQ pairs TCRAs and TCRBs by distributing a
sample of T cells across a 96-well sample plate, then sequencing the contents of each well. It then calculates p-values for
every TCRA/TCRB sequence overlap and compares that against a null distribution, to find the most statistically probable pairings.
This is a well-studied combinatorial optimization problem, with many known solutions.
The most efficient algorithm known to the author for maximum weight matching of a bipartite graph with strictly integral weights
is from Duan and Su (2012). For a graph with m edges, n vertices per side, and maximum integer edge weight N,
their algorithm runs in **O(m sqrt(n) log(N))** time. As the graph representation of a pairSEQ experiment is
bipartite with integer weights, this algorithm is ideal for BiGpairSEQ.
BiGpairSEQ uses the same fundamental idea of using occupancy overlap to pair TCR sequences, but unlike pairSEQ it
does not require performing any statistical calculations at all. Instead, BiGpairSEQ uses graph theory methods which
produce provably optimal solutions.
Unfortunately, it's a fairly new algorithm, and not yet implemented by the graph theory library used in this simulator.
So this program instead uses the Fibonacci heap-based algorithm of Fredman and Tarjan (1987), which has a worst-case
runtime of **O(n (n log(n) + m))**. The algorithm is implemented as described in Melhorn and Näher (1999).
BiGpairSEQ creates a [weighted bipartite graph](https://en.wikipedia.org/wiki/Bipartite_graph) representing the sample plate.
The distinct TCRA and TCRB sequences form the two sets of vertices. Every TCRA/TCRB pair that share a well on the sample plate
are connected by an edge in the graph, with the edge weight set to the number of wells in which both sequences appear. The vertices
themselves are labeled with the occupancy data for the individual sequences they represent, which is useful for pre-filtering
before finding a maximum weight matching. Such a graph fully encodes the distribution data from the sample plate.
The current version of the program uses a pairing heap instead of a Fibonacci heap for its priority queue,
which has lower theoretical efficiency but also lower complexity overhead, and is often equivalently performant
in practice.
The problem of pairing TCRA/TCRB sequences thus reduces to the [assignment problem](https://en.wikipedia.org/wiki/Assignment_problem) of finding a maximum weight
matching (MWM) on a bipartite graph--the subset of vertex-disjoint edges whose weights sum to the maximum possible value.
This is a well-studied combinatorial optimization problem, with many known algorithms that produce
provably-optimal solutions. The most theoretically efficient algorithm known to the author for maximum weight matching of a bipartite
graph with strictly integral weights is from [Duan and Su (2012)](#citations). For a graph with m edges, n vertices per side,
and maximum integer edge weight N, their algorithm runs in **O(m sqrt(n) log(N))** time. As the graph representation of
a pairSEQ experiment is bipartite with integer weights, this algorithm seems ideal for BiGpairSEQ. Unfortunately, it is not
implemented by the graph theory library used in this simulator (JGraphT), and the author has not yet had time to write a
full, optimized implementation himself for testing.
So this program instead uses the [Fibonacci heap](https://en.wikipedia.org/wiki/Fibonacci_heap) based algorithm of Fredman and Tarjan (1987) (essentially
[the Hungarian algorithm](https://en.wikipedia.org/wiki/Hungarian_algorithm) augmented with a more efficient priority queue) which has a worst-case
runtime of **O(n (n log(n) + m))**. The algorithm is implemented as described in [Melhorn and Näher (1999)](#citations). (The simulator can use either a
Fibonacci heap or a [pairing heap](https://en.wikipedia.org/wiki/Pairing_heap) as desired. By default, a pairing heap is used,
as in practice they often offer superior performance.)
One possible advantage of this less efficient algorithm is that the Hungarian algorithm and its variations work with both the balanced and the unbalanced assignment problem
(that is, cases where both sides of the bipartite graph have the same number of vertices and those in which they don't.)
Many other MWM algorithms only work for the balanced assignment problem. While pairSEQ-style experiments should theoretically
be balanced assignment problems, in practice sequence dropout can cause them to be unbalanced. The unbalanced case
*can* be reduced to the balanced case, but doing so involves doubling the graph size. Since the current implementation uses only
the Hungarian algorithm, graph doubling--which could be challenging with the computational resources available to the
author--has not yet been necessary.
There have been some studies which show that [auction algorithms](https://en.wikipedia.org/wiki/Auction_algorithm) for the assignment problem can have superior performance in
real-world implementations, due to their simplicity, than more complex algorithms with better theoretical asymptotic
performance. The author has implemented a basic forward auction algorithm, which produces optimal assignment for unbalanced bipartite graphs with
integer weights. To allow for unbalanced assignment, this algorithm eschews epsilon-scaling,
and as a result is prone to "bidding-wars" which increase run time, making it less efficient than the implementation of
the Fredman-Tarjan algorithm in JGraphT. A forward/reverse auction algorithm as developed by Bertsekas and Castañon
should be able to handle unbalanced (or, as they call it, asymmetric) assignment much more efficiently, but has yet to be
implemented.
The relative time/space efficiencies of BiGpairSEQ when backed by different MWM algorithms remains an open problem.
## THE BiGpairSEQ ALGORITHM
1. Sequence a sample plate of T cells as in pairSEQ.
2. Pre-filter the sequence data to reduce error and minimize the size of the necessary graph.
1. *Saturating sequence filter*: remove any sequences present in all wells on the sample plate, as there is no signal in the occupancy data of saturating sequences (and each saturating sequence will have an edge to every vertex on the opposite side of the graph, vastly increasing the total graph size).
2. *Non-existent sequence filter*: sequencing misreads can pollute the data from the sample plate with non-existent sequences. These can be identified by the discrepancy between their occupancy and their total read count. Assuming sequences are read correctly at least half the time, then a sequence's total read count (R) should be at least half the well occupancy of that sequence (O) times the read depth of the sequencing run (D). Remove any sequences for which R < (O * D) / 2.
3. *Misidentified sequence filter*: sequencing misreads can cause one real sequence to be misidentified as a different real sequence. This should be fairly infrequent, but is a problem if it skews a sequence's overall occupancy pattern by causing the sequence to seem to be in a well where it's not. This can be detected by looking for discrepancies in a sequence's per-well read count. On average, the read count for a sequence in an individual well (r) should be equal to its total read count (R) divided by its total well occupancy (O). Remove from the list of wells occupied by a sequence any wells for which r < R / (2 * O).
3. Encode the occupancy data from the sample plate as a weighted bipartite graph, where one set of vertices represent the distinct TCRAs and the other set represents distinct TCRBs. Between any TCRA and TCRB that share a well, draw an edge. Assign that edge a weight equal to the total number of wells shared by both sequences.
4. Find a maximum weight matching of the bipartite graph, using any [MWM algorithm](https://en.wikipedia.org/wiki/Assignment_problem#Algorithms) that produces a provably optimal result.
* If desired, restrict the matching to a subset of the graph. (Example: restricting matching attempts to cases where the occupancy overlap is 4 or more wells--that is, edges with weight >= 4.0.) See below for discussion of why this might be desirable.
5. The resultant matching represents the likeliest TCRA/TCRB sequence pairs based on the occupancy pattern of the sample plate.
It is important to note that a maximum weight matching is not necessarily unique. If two different sets of vertex-disjoint edges
sum to the same maximal weight, then a MWM algorithms might find either one of them.
For example, consider a well that contains four rare sequences found only in that well, two TCRAs and two TCRBs.
In the graph, both of those TCRAs would have edges to both TCRBs (and to others of course, but since those edges will have a weight of 1.0,
they are unlikely be paired in a MWM to sequences with total occupancy of more than one well). If these four sequences
represent two unique T cells, then only one of the two possible pairings between these sequences is correct. But both
the correct and incorrect pairing will add 2.0 to the total graph weight, so either one could be part of a maximum weight matching.
It is to minimize the number of possible equivalent-weight matchings that one might restrict the algorithm to examining
only a subset of the graph, as described in step 4 above.
## USAGE
@@ -39,7 +115,7 @@ in practice.
[Download the current version of BiGpairSEQ_Sim.](https://gitea.ejsf.synology.me/efischer/BiGpairSEQ/releases)
BiGpairSEQ_Sim is an executable .jar file. Requires Java 11 or higher. [OpenJDK 17](https://jdk.java.net/17/)
BiGpairSEQ_Sim is an executable .jar file. Requires Java 14 or higher. [OpenJDK 17](https://jdk.java.net/17/)
recommended.
Run with the command:
@@ -47,44 +123,189 @@ Run with the command:
`java -jar BiGpairSEQ_Sim.jar`
Processing sample plates with tens of thousands of sequences may require large amounts
of RAM. It is often desirable to increase the JVM maximum heap allocation with the -Xmx flag.
of RAM. It is often desirable to increase the JVM maximum heap allocation with the `-Xmx` flag.
For example, to run the program with 32 gigabytes of memory, use the command:
`java -Xmx32G -jar BiGpairSEQ_Sim.jar`
Once running, BiGpairSEQ_Sim has an interactive, menu-driven CLI for generating files and simulating TCR pairing. The
main menu looks like this:
### COMMAND LINE OPTIONS
There are a number of command line options, to allow the program to be used in shell scripts. These can be viewed with
the `-help` flag:
`java -jar BiGpairSEQ_Sim.jar -help`
```
usage: BiGpairSEQ_Sim.jar
-cells,--make-cells Makes a cell sample file of distinct T cells
-graph,--make-graph Makes a graph/data file. Requires a cell sample
file and a sample plate file
-help Displays this help menu
-match,--match-cdr3 Matches CDR3s. Requires a graph/data file.
-plate,--make-plate Makes a sample plate file. Requires a cell sample
file.
-version Prints the program version number to stdout
usage: BiGpairSEQ_Sim.jar -cells
-d,--diversity-factor <factor> The factor by which unique CDR3s
outnumber unique CDR1s
-n,--num-cells <number> The number of distinct cells to generate
-o,--output-file <filename> Name of output file
usage: BiGpairSEQ_Sim.jar -plate
-c,--cell-file <filename> The cell sample file to use
-d,--dropout-rate <rate> The sequence dropout rate due to
amplification error. (0.0 - 1.0)
-exp <value> If using -zipf flag, exponent value for
distribution
-exponential Use an exponential distribution for cell
sample
-gaussian Use a Gaussian distribution for cell sample
-lambda <value> If using -exponential flag, lambda value
for distribution
-o,--output-file <filename> Name of output file
-poisson Use a Poisson distribution for cell sample
-pop <number [number]...> The well populations for each section of
the sample plate. There will be as many
sections as there are populations given.
-random <min> <max> Randomize well populations on sample plate.
Takes two arguments: the minimum possible
population and the maximum possible
population.
-stddev <value> If using -gaussian flag, standard deviation
for distrbution
-w,--wells <number> The number of wells on the sample plate
-zipf Use a Zipf distribution for cell sample
usage: BiGpairSEQ_Sim.jar -graph
-c,--cell-file <filename> Cell sample file to use for
checking pairing accuracy
-err,--read-error-prob <prob> (Optional) The probability that
a sequence will be misread. (0.0
- 1.0)
-errcoll,--error-collision-prob <prob> (Optional) The probability that
two misreads will produce the
same spurious sequence. (0.0 -
1.0)
-graphml (Optional) Output GraphML file
-nb,--no-binary (Optional) Don't output
serialized binary file
-o,--output-file <filename> Name of output file
-p,--plate-filename <filename> Sample plate file from which to
construct graph
-rd,--read-depth <depth> (Optional) The number of times
to read each sequence.
-realcoll,--real-collision-prob <prob> (Optional) The probability that
a sequence will be misread as
another real sequence. (Only
applies to unique misreads;
after this has happened once,
future error collisions could
produce the real sequence again)
(0.0 - 1.0)
usage: BiGpairSEQ_Sim.jar -match
-g,--graph-file <filename> The graph/data file to use
-max <number> The maximum number of shared wells to
attempt to match a sequence pair
-maxdiff <number> (Optional) The maximum difference in total
occupancy between two sequences to attempt
matching.
-min <number> The minimum number of shared wells to
attempt to match a sequence pair
-minpct <percent> (Optional) The minimum percentage of a
sequence's total occupancy shared by
another sequence to attempt matching. (0 -
100)
-o,--output-file <filename> (Optional) Name of output the output file.
If not present, no file will be written.
--print-alphas (Optional) Print the number of distinct
alpha sequences to stdout.
--print-attempt (Optional) Print the pairing attempt rate
to stdout
--print-betas (Optional) Print the number of distinct
beta sequences to stdout.
--print-correct (Optional) Print the number of correct
pairs to stdout
--print-error (Optional) Print the pairing error rate to
stdout
--print-incorrect (Optional) Print the number of incorrect
pairs to stdout
--print-metadata (Optional) Print a full summary of the
matching results to stdout.
--print-time (Optional) Print the total simulation time
to stdout.
-pv,--p-value (Optional) Calculate p-values for sequence
pairs.
```
### INTERACTIVE INTERFACE
If no command line arguments are given, BiGpairSEQ_Sim will launch with an interactive, menu-driven CLI for
generating files and simulating TCR pairing. The main menu looks like this:
```
--------BiGPairSEQ SIMULATOR--------
ALPHA/BETA T CELL RECEPTOR MATCHING
USING WEIGHTED BIPARTITE GRAPHS
USING WEIGHTED BIPARTITE GRAPHS
------------------------------------
Please select an option:
1) Generate a population of distinct cells
2) Generate a sample plate of T cells
3) Generate CDR3 alpha/beta occupancy data and overlap graph
4) Simulate bipartite graph CDR3 alpha/beta matching (BiGpairSEQ)
8) Options
9) About/Acknowledgments
0) Exit
```
### OUTPUT
By default, the Options menu looks like this:
```
--------------OPTIONS---------------
1) Turn on cell sample file caching
2) Turn on plate file caching
3) Turn on graph/data file caching
4) Turn off serialized binary graph output
5) Turn on GraphML graph output
6) Turn on calculation of p-values
7) Maximum weight matching algorithm options
0) Return to main menu
```
### INPUT/OUTPUT
To run the simulation, the program reads and writes 4 kinds of files:
* Cell Sample files in CSV format
* Sample Plate files in CSV format
* Graph and Data files in binary object serialization format
* Graph/Data files in binary object serialization format
* Matching Results files in CSV format
When entering filenames, it is not necessary to include the file extension (.csv or .ser). When reading or
writing files, the program will automatically add the correct extension to any filename without one.
These files are often generated in sequence. When entering filenames, it is not necessary to include the file extension
(.csv or .ser). When reading or writing files, the program will automatically add the correct extension to any filename
without one.
To save file I/O time when using the interactive interface, the most recent instance of each of these four
files either generated or read from disk can be cached in program memory. When caching is active, subsequent uses of the
same data file won't need to be read in again until another file of that type is used or generated,
or caching is turned off for that file type. The program checks whether it needs to update its cached data by comparing
filenames as entered by the user. On encountering a new filename, the program flushes its cache and reads in the new file.
(Note that cached Graph/Data files must be transformed back into their original state after a matching experiment, which
may take some time. Whether file I/O or graph transformation takes longer for graph/data files is likely to be
device-specific.)
The program's caching behavior can be controlled in the Options menu. By default, all caching is OFF.
The program can optionally output Graph/Data files in GraphML format (.graphml) for data portability. This can be
turned on in the Options menu. By default, GraphML output is OFF.
---
#### Cell Sample Files
Cell Sample files consist of any number of distinct "T cells." Every cell contains
four sequences: Alpha CDR3, Beta CDR3, Alpha CDR1, Beta CDR1. The sequences are represented by
random integers. CDR3 Alpha and Beta sequences are all unique within a given Cell Sample file. CDR1 Alpha and Beta sequences
are not necessarily unique; the relative diversity can be set when making the file.
are not necessarily unique; the relative diversity of CRD1s with respect to CDR3s can be set when making the file.
(Note: though cells still have CDR1 sequences, matching of CDR1s is currently awaiting re-implementation.)
@@ -97,12 +318,11 @@ Comments are preceded by `#`
Structure:
---
# Sample contains 1 unique CDR1 for every 4 unique CDR3s.
| Alpha CDR3 | Beta CDR3 | Alpha CDR1 | Beta CDR1 |
|---|---|---|---|
|unique number|unique number|number|number|
| ... | ... |... | ... |
---
#### Sample Plate Files
@@ -111,7 +331,8 @@ described above). The wells are filled randomly from a Cell Sample file, accordi
frequency distribution. Additionally, every individual sequence within each cell may, with some
given dropout probability, be omitted from the file; this simulates the effect of amplification errors
prior to sequencing. Plates can also be partitioned into any number of sections, each of which can have a
different concentration of T cells per well.
different concentration of T cells per well. Alternatively, the number of T cells in each well can be randomized between
given minimum and maximum population values.
Options when making a Sample Plate file:
* Cell Sample file to use
@@ -121,15 +342,19 @@ Options when making a Sample Plate file:
* Standard deviation size
* Exponential
* Lambda value
* (Based on the slope of the graph in Figure 4C of the pairSEQ paper, the distribution of the original experiment was exponential with a lambda of approximately 0.6. (Howie, et al. 2015))
* Zipf
* Exponent value
* Total number of wells on the plate
* Number of sections on plate
* Number of T cells per well
* per section, if more than one section
* Dropout rate
* Well populations random or fixed
* If random, minimum and maximum population sizes
* If fixed
* Number of sections on plate
* Number of T cells per well
* per section, if more than one section
* Sequence dropout rate
Files are in CSV format. There are no header labels. Every row represents a well.
Every column represents an individual cell, containing four sequences, depicted as an array string:
Every value represents an individual cell, containing four sequences, depicted as an array string:
`[CDR3A, CDR3B, CDR1A, CDR1B]`. So a representative cell might look like this:
`[525902, 791533, -1, 866282]`
@@ -139,7 +364,6 @@ Dropout sequences are replaced with the value `-1`. Comments are preceded by `#`
Structure:
---
```
# Cell source file name:
# Each row represents one well on the plate
@@ -155,8 +379,8 @@ Structure:
---
#### Graph and Data Files
Graph and Data files are serialized binaries of a Java object containing the weigthed bipartite graph representation of a
#### Graph/Data Files
Graph/Data files are serialized binaries of a Java object containing the weigthed bipartite graph representation of a
Sample Plate, along with the necessary metadata for matching and results output. Making them requires a Cell Sample file
(to construct a list of correct sequence pairs for checking the accuracy of BiGpairSEQ simulations) and a
Sample Plate file (to construct the associated occupancy graph).
@@ -164,22 +388,33 @@ Sample Plate file (to construct the associated occupancy graph).
These files can be several gigabytes in size. Writing them to a file lets us generate a graph and its metadata once,
then use it for multiple different BiGpairSEQ simulations.
Options for creating a Graph and Data file:
Options for creating a Graph/Data file:
* The Cell Sample file to use
* The Sample Plate file to use. (This must have been generated from the selected Cell Sample file.)
* The Sample Plate file to use (This must have been generated from the selected Cell Sample file.)
* Whether to simulate sequencing read depth. If simulated:
* The read depth (The number of times each sequence is read)
* The read error rate (The probability a sequence is misread)
* The error collision rate (The probability two misreads produce the same spurious sequence)
* The real sequence collision rate (The probability that a misread will produce a different, real sequence from the sample plate. Only applies to new misreads; once an error of this type has occurred, it's likelihood of occurring again is dominated by the error collision probability.)
These files do not have a human-readable structure, and are not portable to other programs. (Export of graphs in a
portable data format may be implemented in the future. The tricky part is encoding the necessary metadata.)
These files do not have a human-readable structure, and are not portable to other programs.
*Optional GraphML output*
For portability of graph data to other software, turn on [GraphML](http://graphml.graphdrawing.org/index.html) output
in the Options menu in interactive mode, or use the `-graphml`command line argument. This will produce a .graphml file
for the weighted graph, with vertex attributes for sequence, type, total occupancy, total read count, and the read count for every individual occupied well.
This graph contains all the data necessary for the BiGpairSEQ matching algorithm. It does not include the data to measure pairing accuracy; for that,
compare the matching results to the original Cell Sample .csv file.
---
#### Matching Results Files
Matching results files consist of the results of a BiGpairSEQ matching simulation. Making them requires a Graph and
Data file. To save file I/O time, the data from the most recent Graph and Data file read or generated is cached
by the simulator. Subsequent BiGpairSEQ simulations run with the same input filename will use the cached version
rather than reading in again from disk.
Matching results files consist of the results of a BiGpairSEQ matching simulation. Making them requires a serialized
binary Graph/Data file (.ser). (Because .graphML files are larger than .ser files, BiGpairSEQ_Sim supports .graphML
output only. Graph input must use a serialized binary.)
Files are in CSV format. Rows are sequence pairings with extra relevant data. Columns are pairing-specific details.
Matching results files are in CSV format. Rows are sequence pairings with extra relevant data. Columns are pairing-specific details.
Metadata about the matching simulation is included as comments. Comments are preceded by `#`.
Options when running a BiGpairSEQ simulation of CDR3 alpha/beta matching:
@@ -194,94 +429,262 @@ Options when running a BiGpairSEQ simulation of CDR3 alpha/beta matching:
Example output:
---
```
# Source Sample Plate file: 4MilCellsPlate.csv
# Source Graph and Data file: 4MilCellsPlateGraph.ser
# T cell counts in sample plate wells: 30000
# Total alphas found: 11813
# Total betas found: 11808
# High overlap threshold: 94
# Low overlap threshold: 3
# Minimum overlap percent: 0
# Maximum occupancy difference: 96
# Pairing attempt rate: 0.438
# Correct pairings: 5151
# Incorrect pairings: 18
# Pairing error rate: 0.00348
# Simulation time: 862 seconds
# cell sample filename: 8MilCells.csv
# cell sample size: 8000000
# sample plate filename: 8MilCells_Plate.csv
# sample plate well count: 96
# sequence dropout rate: 0.1
# graph filename: 8MilGraph_rd2
# MWM algorithm type: LEDA book with heap: FIBONACCI
# matching weight: 218017.0
# well populations: 4000
# sequence read depth: 100
# sequence read error rate: 0.01
# read error collision rate: 0.1
# real sequence collision rate: 0.05
# total alphas read from plate: 323711
# total betas read from plate: 323981
# alphas in graph (after pre-filtering): 11707
# betas in graph (after pre-filtering): 11705
# high overlap threshold for pairing: 95
# low overlap threshold for pairing: 3
# minimum overlap percent for pairing: 0
# maximum occupancy difference for pairing: 2147483647
# pairing attempt rate: 0.716
# correct pairing count: 8373
# incorrect pairing count: 7
# pairing error rate: 0.000835
# time to generate graph (seconds): 293
# time to pair sequences (seconds): 1,416
# total simulation time (seconds): 1,709
```
| Alpha | Alpha well count | Beta | Beta well count | Overlap count | Matched Correctly? | P-value |
|---|---|---|---|---|---|---|
|5242972|17|1571520|18|17|true|1.41E-18|
|5161027|18|2072219|18|18|true|7.31E-20|
|4145198|33|1064455|30|29|true|2.65E-21|
|7700582|18|112748|18|18|true|7.31E-20|
|10258642|73|1172093|72|70.0|true|4.19E-21|
|6186865|34|4290363|37|34.0|true|4.56E-26|
|10222686|70|11044018|72|68.0|true|9.55E-25|
|5338100|75|2422988|76|74.0|true|4.57E-22|
|12363907|33|6569852|35|33.0|true|5.70E-26|
|...|...|...|...|...|...|...|
---
**NOTE: The p-values in the output are not used for matching**—they aren't part of the BiGpairSEQ algorithm at all.
P-values are calculated *after* BiGpairSEQ matching is completed, for purposes of comparison only,
using the (2021 corrected) formula from the original pairSEQ paper. (Howie, et al. 2015)
### PERFORMANCE
Performance details of the example excerpted above:
On a home computer with a Ryzen 5600X CPU, 64GB of 3200MHz DDR4 RAM (half of which was allocated to the Java Virtual Machine), and a PCIe 3.0 SSD, running Linux Mint 20.3 Edge (5.13 kernel),
the author ran a BiGpairSEQ simulation of a 96-well sample plate with 30,000 T cells/well comprising ~11,800 alphas and betas,
taken from a sample of 4,000,000 distinct cells with an exponential frequency distribution.
With min/max occupancy threshold of 3 and 94 wells for matching, and no other pre-filtering, BiGpairSEQ identified 5,151
correct pairings and 18 incorrect pairings, for an accuracy of 99.652%.
The simulation time was 14'22". If intermediate results were held in memory, this would be equivalent to the total elapsed time.
Since this implementation of BiGpairSEQ writes intermediate results to disk (to improve the efficiency of *repeated* simulations
with different filtering options), the actual elapsed time was greater. File I/O time was not measured, but took
slightly less time than the simulation itself. Real elapsed time from start to finish was under 30 minutes.
## TODO
* ~~Try invoking GC at end of workloads to reduce paging to disk~~ DONE
* Hold graph data in memory until another graph is read-in? ~~ABANDONED~~ ~~UNABANDONED~~ DONE
* ~~*No, this won't work, because BiGpairSEQ simulations alter the underlying graph based on filtering constraints. Changes would cascade with multiple experiments.*~~
* Might have figured out a way to do it, by taking edges out and then putting them back into the graph. This may actually be possible. If so, awesome.
* See if there's a reasonable way to reformat Sample Plate files so that wells are columns instead of rows.
* ~~Problem is variable number of cells in a well~~
* ~~Apache Commons CSV library writes entries a row at a time~~
* _Got this working, but at the cost of a profoundly strange bug in graph occupancy filtering. Have reverted the repo until I can figure out what caused that. Given how easily Thingiverse transposes CSV matrices in R, might not even be worth fixing._
* Re-implement command line arguments, to enable scripting and statistical simulation studies
* Implement sample plates with random numbers of T cells per well.
* Possible BiGpairSEQ advantage over pairSEQ: BiGpairSEQ is resilient to variations in well population sizes on a sample plate; pairSEQ is not.
* preliminary data suggests that BiGpairSEQ behaves roughly as though the whole plate had whatever the *average* well concentration is, but that's still speculative.
* Enable GraphML output in addition to serialized object binaries, for data portability
* Custom vertex type with attribute for sequence occupancy?
* Re-implement CDR1 matching method
* Implement Duan and Su's maximum weight matching algorithm
* Add controllable algorithm-type parameter?
* Test whether pairing heap (currently used) or Fibonacci heap is more efficient for priority queue in current matching algorithm
* in theory Fibonacci heap should be more efficient, but complexity overhead may eliminate theoretical advantage
* Add controllable heap-type parameter?
**NOTE: The p-values in the sample output above are not used for matching**—they aren't part of the BiGpairSEQ algorithm at all.
P-values (if enabled in the interactive menu options or by using the -pv flag on the command line) are calculated *after*
BiGpairSEQ matching is completed, for purposes of comparison with pairSEQ only, using the (corrected) formula from the
original pairSEQ paper. (Howie, et al. 2015) Calculation of p-values is off by default to reduce processing time.
## RESULTS
Several BiGpairSEQ simulations were performed on a home computer with the following specs:
* Ryzen 5600X CPU
* 128GB of 3200MHz DDR4 RAM
* 2TB PCIe 3.0 SSD
* Linux Mint 21 (5.15 kernel)
### SAMPLE PLATES WITH VARYING NUMBERS OF CELLS PER WELL
The probability calculations used by pairSEQ require that every well on the sample plate contain the same number of T cells.
BiGpairSEQ does not share this limitation; it is robust to variations in the number of cells per well.
A series of BiGpairSEQ simulations were conducted using a cell sample file of 3.5 million unique T cells. From these cells,
10 sample plate files were created. All of these sample plates had 96 wells, used an exponential distribution with a lambda of 0.6, and
had a sequence dropout rate of 10%.
The well populations of the plates were:
* One sample plate with 1000 T cells/well
* One sample plate with 2000 T cells/well
* One sample plate with 3000 T cells/well
* One sample plate with 4000 T cells/well
* One sample plate with 5000 T cells/well
* Five sample plates with each individual well's population randomized, from 1000 to 5000 T cells. (Average population ~3000 T cells/well.)
All BiGpairSEQ simulations were run with a low overlap threshold of 3 and a high overlap threshold of 94.
No optional filters were used, so pairing was attempted for all sequences with overlaps within the threshold values.
NOTE: these results were obtained with an earlier version of BiGpairSEQ_Sim, and should be re-run with the current version.
The observed behavior is not believed to be likely to change, however.
Constant well population plate results:
| |1000 Cell/Well Plate|2000 Cell/Well Plate|3000 Cell/Well Plate|4000 Cell/Well Plate|5000 Cell/Well Plate
|---|---|---|---|---|---|
|Total Alphas Found|6407|7330|7936|8278|8553|
|Total Betas Found|6405|7333|7968|8269|8582|
|Pairing Attempt Rate|0.661|0.653|0.600|0.579|0.559|
|Correct Pairing Count|4231|4749|4723|4761|4750|
|Incorrect Pairing Count|3|34|40|26|29|
|Pairing Error Rate|0.000709|0.00711|0.00840|0.00543|0.00607|
|Simulation Time (Seconds)|500|643|700|589|598|
Randomized well population plate results:
| |Random Plate 1 | Random Plate 2|Random Plate 3|Random Plate 4|Random Plate 5|Average|
|---|---|---|---|---|---|---|
Total Alphas Found|7853|7904|7964|7898|7917|7907|
Total Betas Found|7851|7891|7920|7910|7894|7893|
Pairing Attempt Rate|0.607|0.610|0.601|0.605|0.603|0.605|
Correct Pairing Count|4718|4782|4721|4755|4731|4741|
Incorrect Pairing Count|51|35|42|27|29|37|
Pairing Error Rate|0.0107|0.00727|0.00882|0.00565|0.00609|0.00771|
Simulation Time (Seconds)|590|677|730|618|615|646|
The average results for the randomized plates are closest to the constant plate with 3000 T cells/well.
This and several other tests indicate that BiGpairSEQ treats a sample plate with a highly variable number of T cells/well
roughly as though it had a constant well population equal to the plate's average well population.
### SIMULATING EXPERIMENTS FROM THE 2015 pairSEQ PAPER
#### Experiment 1
This simulation was an attempt to replicate the conditions of experiment 1 from the 2015 pairSEQ paper: a matching was found for a
96-well sample plate with 4,000 T cells/well, taken from a sample of 8,400,000
distinct cells sampled with an exponential frequency distribution. Examination of Figure 4C from the paper seems to show the points
(-5, 4) and (-4.5, 3.3) on the line at the boundary of the shaded region, so a lambda value of 1.4 was used for the
exponential distribution.
The sequence dropout rate was 10%, as the analysis in the paper concluded that most TCR
sequences "have less than a 10% chance of going unobserved." (Howie, et al. 2015) Given this choice of 10%, the simulated
sample plate is likely to have more sequence dropout, and thus greater error, than the real experiment.
The original paper does not contain (or the author of this document failed to identify) information on sequencing depth,
read error probability, or the probabilities of different kinds of read error collisions. As the pre-filtering of BiGpairSEQ
has successfully filtered out all such errors for any reasonable error rates the author has yet tested, this simulation was
done without simulating any sequencing errors, to reduce the processing time.
This simulation was performed 5 times with min/max occupancy thresholds of 3 and 95 wells respectively for matching.
| |Run 1|Run 2|Run 3|Run 4|Run 5| Average|
|---|---|---|---|---|---|---|
|Total pairs|4398|4420|4404|4409|4414|4409|
|Correct pairs|4322|4313|4337|4336|4339|4329.4|
|Incorrect pairs|76|107|67|73|75|79.6|
|Error rate|0.0173|0.0242|0.0152|0.0166|0.0170|0.018|
|Simulation time (seconds)|697|484|466|473|463|516.6|
The experiment in the original paper called 4143 pairs with a false discovery rate of 0.01.
Given the roughness of the estimation for the cell frequency distribution of the original experiment and the likely
higher rate of sequence dropout in the simulation, these simulated results match the real experiment fairly well.
#### Experiment 3
To simulate experiment 3 from the original paper, a matching was made for a 96-well sample plate with 160,000 T cells/well,
taken from a sample of 4.5 million distinct T cells sampled with an exponential frequency distribution (lambda 1.4). The
sequence dropout rate was again 10%, and no sequencing errors were simulated. Once again, deviation from the original
experiment is expected due to the roughness of the estimated frequency distribution, and due to the high sequence dropout
rate.
Results metadata:
```
# total alphas read from plate: 6929
# total betas read from plate: 6939
# alphas in graph (after pre-filtering): 4452
# betas in graph (after pre-filtering): 4461
# high overlap threshold for pairing: 95
# low overlap threshold for pairing: 3
# minimum overlap percent for pairing: 0
# maximum occupancy difference for pairing: 100
# pairing attempt rate: 0.767
# correct pairing count: 3233
# incorrect pairing count: 182
# pairing error rate: 0.0533
# time to generate graph (seconds): 40
# time to pair sequences (seconds): 230
# total simulation time (seconds): 270
```
The simulation ony found 6929 distinct TCRAs and 6939 TCRBs on the sample plate, orders of magnitude fewer than the number of
pairs called in the pairSEQ experiment. These results show that at very high sampling depths, the differences in the
underlying frequency distribution drastically affect the results. The real distribution clearly has a much longer "tail"
than the simulated exponential distribution. Implementing a way to exert finer control over the sampling distribution from
the file of distinct cells may enable better simulated replication of this experiment.
## CITATIONS
* Howie, B., Sherwood, A. M., et al. ["High-throughput pairing of T cell receptor alpha and beta sequences."](https://pubmed.ncbi.nlm.nih.gov/26290413/) Sci. Transl. Med. 7, 301ra131 (2015)
* Duan, R., Su H. ["A Scaling Algorithm for Maximum Weight Matching in Bipartite Graphs."](https://web.eecs.umich.edu/~pettie/matching/Duan-Su-scaling-bipartite-matching.pdf) Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, p. 1413-1424. (2012)
* Melhorn, K., Näher, St. [The LEDA Platform of Combinatorial and Geometric Computing.](https://people.mpi-inf.mpg.de/~mehlhorn/LEDAbook.html) Cambridge University Press. Chapter 7, Graph Algorithms; p. 132-162 (1999)
* Fredman, M., Tarjan, R. ["Fibonacci heaps and their uses in improved network optimization algorithms."](https://www.cl.cam.ac.uk/teaching/1011/AlgorithII/1987-FredmanTar-fibonacci.pdf) J. ACM, 34(3):596615 (1987))
* Bertsekas, D., Castañon, D. ["A forward/reverse auction algorithm for asymmetric assignment problems."](https://www.mit.edu/~dimitrib/For_Rev_Asym_Auction.pdf) Computational Optimization and Applications 1, 277-297 (1992)
* Dimitrios Michail, Joris Kinable, Barak Naveh, and John V. Sichi. ["JGraphT—A Java Library for Graph Data Structures and Algorithms."](https://dl.acm.org/doi/10.1145/3381449) ACM Trans. Math. Softw. 46, 2, Article 16 (2020)
## EXTERNAL LIBRARIES USED
* [JGraphT](https://jgrapht.org) -- Graph theory data structures and algorithms
* [JHeaps](https://www.jheaps.org) -- For pairing heap priority queue used in maximum weight matching algorithm
* [Apache Commons CSV](https://commons.apache.org/proper/commons-csv/) -- For CSV file output
* [Apache Commons CLI](https://commons.apache.org/proper/commons-cli/) -- To enable command line arguments for scripting. (**Awaiting re-implementation**.)
* [Apache Commons CLI](https://commons.apache.org/proper/commons-cli/) -- To enable command line arguments for scripting.
## ACKNOWLEDGEMENTS
BiGpairSEQ was conceived in collaboration with Dr. Alice MacQueen, who brought the original
BiGpairSEQ was conceived in collaboration with the author's spouse, Dr. Alice MacQueen, who brought the original
pairSEQ paper to the author's attention and explained all the biology terms he didn't know.
## AUTHOR
BiGpairSEQ algorithm and simulation by Eugene Fischer, 2021. UI improvements and documentation, 2022.
BiGpairSEQ algorithm and simulation by Eugene Fischer, 2021. Improvements and documentation, 20222025.
## DISCLOSURE
The earliest versions of the BiGpairSEQ simulator were written in 2021 to let Dr. MacQueen test hypothetical extensions
of the published pairSEQ protocol while she was interviewing for a position at Adaptive Biotechnologies. She was
employed at Adaptive Biotechnologies starting in 2022.
The author has worked on this BiGpairSEQ simulator since 2021 without Dr. MacQueen's involvement, since she has had
access to related, proprietary technologies. The author has had no such access, relying exclusively on the 2015 pairSEQ
paper and other academic publications. He continues to work on the BiGpairSEQ simulator recreationally, as it has been
a means of exploring some very beautiful math.
## TODO
* Consider whether a graph database might be a better option than keeping things in memory.
* Look at fastUtil for more performant maps and arrays. Note that there is an optional jGraphT library to work with fastUtil (see FastutilMapIntVertexGraph, for example).
* Consider implementing an option to use the jGrapht sparse graph representation for a lower memory cost with very large graphs (tens or hundreds of thousands of distinct sequences).
* ~~Update CLI option text in this readme to include Zipf distribution options~~
* ~~Try invoking GC at end of workloads to reduce paging to disk~~ DONE
* ~~Hold graph data in memory until another graph is read-in? ABANDONED UNABANDONED~~ DONE
* ~~*No, this won't work, because BiGpairSEQ simulations alter the underlying graph based on filtering constraints. Changes would cascade with multiple experiments.*~~
* Might have figured out a way to do it, by taking edges out and then putting them back into the graph. This may actually be possible.
* It is possible, though the modifications to the graph incur their own performance penalties. Need testing to see which option is best. It may be computer-specific.
* ~~Test whether pairing heap (currently used) or Fibonacci heap is more efficient for priority queue in current matching algorithm~~ DONE
* ~~in theory Fibonacci heap should be more efficient, but complexity overhead may eliminate theoretical advantage~~
* ~~Add controllable heap-type parameter?~~
* Parameter implemented. Pairing heap the current default.
* ~~Implement sample plates with random numbers of T cells per well.~~ DONE
* Possible BiGpairSEQ advantage over pairSEQ: BiGpairSEQ is resilient to variations in well population sizes on a sample plate; pairSEQ is not due to nature of probability calculations.
* preliminary data suggests that BiGpairSEQ behaves roughly as though the whole plate had whatever the *average* well concentration is, but that's still speculative.
* ~~See if there's a reasonable way to reformat Sample Plate files so that wells are columns instead of rows.~~
* ~~Problem is variable number of cells in a well~~
* ~~Apache Commons CSV library writes entries a row at a time~~
* Got this working, but at the cost of a profoundly strange bug in graph occupancy filtering. Have reverted the repo until I can figure out what caused that. Given how easily Thingiverse transposes CSV matrices in R, might not even be worth fixing.
* ~~Enable GraphML output in addition to serialized object binaries, for data portability~~ DONE
* ~~Have a branch where this is implemented, but there's a bug that broke matching. Don't currently have time to fix.~~
* ~~Re-implement command line arguments, to enable scripting and statistical simulation studies~~ DONE
* ~~Implement custom Vertex class to simplify code and make it easier to implement different MWM algorithms~~ DONE
* Advantage: would eliminate the need to use maps to associate vertices with sequences, which would make the code easier to understand.
* This also seems to be faster when using the same algorithm than the version with lots of maps, which is a nice bonus!
* ~~Implement simulation of read depth, and of read errors. Pre-filter graph for difference in read count to eliminate spurious sequences.~~ DONE
* Pre-filtering based on comparing (read depth) * (occupancy) to (read count) for each sequence works extremely well
* ~~Add read depth simulation options to CLI~~ DONE
* ~~Update graphml output to reflect current Vertex class attributes~~ DONE
* Individual well data from the SequenceRecords could be included, if there's ever a reason for it
* ~~Implement simulation of sequences being misread as other real sequence~~ DONE
* Implement redistributive heap for LEDA matching algorithm to achieve theoretical worst case of O(n(m + n log C)) where C is highest edge weight.
* Update matching metadata output options in CLI
* Add frequency distribution details to metadata output
* need to make an enum for the different distribution types and refactor the Plate class and user interfaces, also add the necessary fields to GraphWithMapData and then call if from Simulator
* Update performance data in this readme
* ~~Add section to ReadMe describing data filtering methods.~~ DONE, now part of algorithm description
* Re-implement CDR1 matching method
* ~~Refactor simulator code to collect all needed data in a single scan of the plate~~ DONE
* ~~Currently it scans once for the vertices and then again for the edge weights. This made simulating read depth awkward, and incompatible with caching of plate files.~~
* ~~This would be a fairly major rewrite of the simulator code, but could make things faster, and would definitely make them cleaner.~~
* Implement Duan and Su's maximum weight matching algorithm
* ~~Add controllable algorithm-type parameter?~~ DONE
* This would be fun and valuable, but probably take more time than I have for a hobby project.
* ~~Implement an auction algorithm for maximum weight matching~~ DONE
* Implement a forward/reverse auction algorithm for maximum weight matching
* Implement an algorithm for approximating a maximum weight matching
* Some of these run in linear or near-linear time
* given that the underlying biological samples have many, many sources of error, this would probably be the most useful option in practice. It seems less mathematically elegant, though, and so less fun for me.
* Implement Vose's alias method for arbitrary statistical distributions of cells
* Should probably refactor to use apache commons rng for this
* Use commons JCS for caching
* Parameterize pre-filtering options

View File

@@ -0,0 +1,5 @@
public enum AlgorithmType {
HUNGARIAN, //Hungarian algorithm
AUCTION, //Forward auction algorithm
INTEGER_WEIGHT_SCALING, //integer weight scaling algorithm of Duan and Su
}

View File

@@ -1,8 +1,25 @@
//main class. Only job is to choose which interface to use, and hold graph data in memory
import java.util.Random;
//main class. For choosing interface type and holding settings
public class BiGpairSEQ {
private static final Random rand = new Random();
private static CellSample cellSampleInMemory = null;
private static String cellFilename = null;
private static Plate plateInMemory = null;
private static String plateFilename = null;
private static GraphWithMapData graphInMemory = null;
private static String graphFilename = null;
private static boolean cacheCells = false;
private static boolean cachePlate = false;
private static boolean cacheGraph = false;
private static AlgorithmType matchingAlgorithmType = AlgorithmType.HUNGARIAN;
private static HeapType priorityQueueHeapType = HeapType.PAIRING;
private static DistributionType distributionType = DistributionType.ZIPF;
private static boolean outputBinary = true;
private static boolean outputGraphML = false;
private static boolean calculatePValue = false;
private static final String version = "version 4.2";
public static void main(String[] args) {
if (args.length == 0) {
@@ -10,33 +27,169 @@ public class BiGpairSEQ {
}
else {
//This will be uncommented when command line arguments are re-implemented.
//CommandLineInterface.startCLI(args);
System.out.println("Command line arguments are still being re-implemented.");
CommandLineInterface.startCLI(args);
//System.out.println("Command line arguments are still being re-implemented.");
}
}
public static GraphWithMapData getGraph() {
return graphInMemory;
public static Random getRand() {
return rand;
}
public static void setGraph(GraphWithMapData g) {
public static CellSample getCellSampleInMemory() {
return cellSampleInMemory;
}
public static void setCellSampleInMemory(CellSample cellSample, String filename) {
if(cellSampleInMemory != null) {
clearCellSampleInMemory();
}
cellSampleInMemory = cellSample;
cellFilename = filename;
System.out.println("Cell sample file " + filename + " cached.");
}
public static void clearCellSampleInMemory() {
cellSampleInMemory = null;
cellFilename = null;
System.gc();
System.out.println("Cell sample file cache cleared.");
}
public static String getCellFilename() {
return cellFilename;
}
public static DistributionType getDistributionType() {return distributionType;}
public static void setDistributionType(DistributionType type) {distributionType = type;}
public static Plate getPlateInMemory() {
return plateInMemory;
}
public static void setPlateInMemory(Plate plate, String filename) {
if(plateInMemory != null) {
clearPlateInMemory();
}
plateInMemory = plate;
plateFilename = filename;
System.out.println("Sample plate file " + filename + " cached.");
}
public static void clearPlateInMemory() {
plateInMemory = null;
plateFilename = null;
System.gc();
System.out.println("Sample plate file cache cleared.");
}
public static String getPlateFilename() {
return plateFilename;
}
public static GraphWithMapData getGraphInMemory() {return graphInMemory;
}
public static void setGraphInMemory(GraphWithMapData g, String filename) {
if (graphInMemory != null) {
clearGraph();
clearGraphInMemory();
}
graphInMemory = g;
graphFilename = filename;
System.out.println("Graph and data file " + filename + " cached.");
}
public static void clearGraph() {
public static void clearGraphInMemory() {
graphInMemory = null;
graphFilename = null;
System.gc();
System.out.println("Graph and data file cache cleared.");
}
public static String getGraphFilename() {
return graphFilename;
}
public static void setGraphFilename(String filename) {
graphFilename = filename;
public static boolean cacheCells() {
return cacheCells;
}
public static void setCacheCells(boolean cacheCells) {
//if not caching, clear the memory
if(!cacheCells){
BiGpairSEQ.clearCellSampleInMemory();
System.out.println("Cell sample file caching: OFF.");
}
else {
System.out.println("Cell sample file caching: ON.");
}
BiGpairSEQ.cacheCells = cacheCells;
}
public static boolean cachePlate() {
return cachePlate;
}
public static void setCachePlate(boolean cachePlate) {
//if not caching, clear the memory
if(!cachePlate) {
BiGpairSEQ.clearPlateInMemory();
System.out.println("Sample plate file caching: OFF.");
}
else {
System.out.println("Sample plate file caching: ON.");
}
BiGpairSEQ.cachePlate = cachePlate;
}
public static boolean cacheGraph() {
return cacheGraph;
}
public static void setCacheGraph(boolean cacheGraph) {
//if not caching, clear the memory
if(!cacheGraph) {
BiGpairSEQ.clearGraphInMemory();
System.out.println("Graph/data file caching: OFF.");
}
else {
System.out.println("Graph/data file caching: ON.");
}
BiGpairSEQ.cacheGraph = cacheGraph;
}
public static HeapType getPriorityQueueHeapType() {
return priorityQueueHeapType;
}
public static AlgorithmType getMatchingAlgorithmType() { return matchingAlgorithmType; }
public static void setHungarianAlgorithm() { matchingAlgorithmType = AlgorithmType.HUNGARIAN; }
public static void setIntegerWeightScalingAlgorithm() { matchingAlgorithmType = AlgorithmType.INTEGER_WEIGHT_SCALING; }
public static void setAuctionAlgorithm() { matchingAlgorithmType = AlgorithmType.AUCTION; }
public static void setPairingHeap() {
priorityQueueHeapType = HeapType.PAIRING;
}
public static void setFibonacciHeap() {
priorityQueueHeapType = HeapType.FIBONACCI;
}
public static boolean outputBinary() {return outputBinary;}
public static void setOutputBinary(boolean b) {outputBinary = b;}
public static boolean outputGraphML() {return outputGraphML;}
public static void setOutputGraphML(boolean b) {outputGraphML = b;}
public static boolean calculatePValue() {return calculatePValue; }
public static void setCalculatePValue(boolean b) {calculatePValue = b; }
public static String getVersion() { return version; }
}

View File

@@ -12,7 +12,8 @@ import java.util.List;
public class CellFileReader {
private String filename;
private List<Integer[]> distinctCells = new ArrayList<>();
private List<String[]> distinctCells = new ArrayList<>();
private Integer cdr1Freq;
public CellFileReader(String filename) {
if(!filename.matches(".*\\.csv")){
@@ -31,26 +32,36 @@ public class CellFileReader {
CSVParser parser = new CSVParser(reader, cellFileFormat);
){
for(CSVRecord record: parser.getRecords()) {
Integer[] cell = new Integer[4];
cell[0] = Integer.valueOf(record.get("Alpha CDR3"));
cell[1] = Integer.valueOf(record.get("Beta CDR3"));
cell[2] = Integer.valueOf(record.get("Alpha CDR1"));
cell[3] = Integer.valueOf(record.get("Beta CDR1"));
String[] cell = new String[4];
cell[0] = record.get("Alpha CDR3");
cell[1] = record.get("Beta CDR3");
cell[2] = record.get("Alpha CDR1");
cell[3] = record.get("Beta CDR1");
distinctCells.add(cell);
}
} catch(IOException ex){
System.out.println("cell file " + filename + " not found.");
System.err.println(ex);
}
//get CDR1 frequency
ArrayList<String> cdr1Alphas = new ArrayList<>();
for (String[] cell : distinctCells) {
cdr1Alphas.add(cell[3]);
}
double count = cdr1Alphas.stream().distinct().count();
count = Math.ceil(distinctCells.size() / count);
cdr1Freq = (int) count;
}
public CellSample getCellSample() {
CellSample sample = new CellSample(distinctCells, cdr1Freq);
sample.setFilename(filename);
return sample;
}
public String getFilename() { return filename;}
public List<Integer[]> getCells(){
return distinctCells;
}
public Integer getCellCount() {
return distinctCells.size();
}
}

View File

@@ -11,7 +11,7 @@ import java.util.List;
public class CellFileWriter {
private String[] headers = {"Alpha CDR3", "Beta CDR3", "Alpha CDR1", "Beta CDR1"};
List<Integer[]> cells;
List<String[]> cells;
String filename;
Integer cdr1Freq;
@@ -35,7 +35,7 @@ public class CellFileWriter {
printer.printComment("Sample contains 1 unique CDR1 for every " + cdr1Freq + "unique CDR3s.");
printer.printRecords(cells);
} catch(IOException ex){
System.out.println("Could not make new file named "+filename);
System.out.println("Could not make new file named " + filename);
System.err.println(ex);
}
}

View File

@@ -1,16 +1,53 @@
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.stream.IntStream;
public class CellSample {
private List<Integer[]> cells;
private List<String[]> cells;
private Integer cdr1Freq;
private String filename;
public CellSample(List<Integer[]> cells, Integer cdr1Freq){
public CellSample(Integer numDistinctCells, Integer cdr1Freq){
this.cdr1Freq = cdr1Freq;
List<Integer> numbersCDR3 = new ArrayList<>();
List<Integer> numbersCDR1 = new ArrayList<>();
Integer numDistCDR3s = 2 * numDistinctCells + 1;
//Assign consecutive integers for each CDR3. This ensures they are all unique.
IntStream.range(1, numDistCDR3s + 1).forEach(i -> numbersCDR3.add(i));
//After all CDR3s are assigned, start assigning consecutive integers to CDR1s
//There will usually be fewer integers in the CDR1 list, which will allow repeats below
IntStream.range(numDistCDR3s + 1, numDistCDR3s + 1 + (numDistCDR3s / cdr1Freq) + 1).forEach(i -> numbersCDR1.add(i));
//randomize the order of the numbers in the lists
Collections.shuffle(numbersCDR3);
Collections.shuffle(numbersCDR1);
//Each cell represented by 4 values
//two CDR3s, and two CDR1s. First two values are CDR3s (alpha, beta), second two are CDR1s (alpha, beta)
List<String[]> distinctCells = new ArrayList<>();
for(int i = 0; i < numbersCDR3.size() - 1; i = i + 2){
//Go through entire CDR3 list once, make pairs of alphas and betas
String tmpCDR3a = numbersCDR3.get(i).toString();
String tmpCDR3b = numbersCDR3.get(i+1).toString();
//Go through the (likely shorter) CDR1 list as many times as necessary, make pairs of alphas and betas
String tmpCDR1a = numbersCDR1.get(i % numbersCDR1.size()).toString();
String tmpCDR1b = numbersCDR1.get((i+1) % numbersCDR1.size()).toString();
//Make the array representing the cell
String[] tmp = {tmpCDR3a, tmpCDR3b, tmpCDR1a, tmpCDR1b};
//Add the cell to the list of distinct cells
distinctCells.add(tmp);
}
this.cells = distinctCells;
this.filename = filename;
}
public CellSample(List<String[]> cells, Integer cdr1Freq){
this.cells = cells;
this.cdr1Freq = cdr1Freq;
}
public List<Integer[]> getCells(){
public List<String[]> getCells(){
return cells;
}
@@ -18,8 +55,12 @@ public class CellSample {
return cdr1Freq;
}
public Integer population(){
public Integer getCellCount(){
return cells.size();
}
public String getFilename() { return filename; }
public void setFilename(String filename) { this.filename = filename; }
}

View File

@@ -1,5 +1,9 @@
import org.apache.commons.cli.*;
import java.io.IOException;
import java.util.Arrays;
import java.util.stream.Stream;
/*
* Class for parsing options passed to program from command line
*
@@ -29,6 +33,12 @@ import org.apache.commons.cli.*;
* cellfile : name of the cell sample file to use as input
* platefile : name of the sample plate file to use as input
* output : name of the output file
* graphml : output a graphml file
* binary : output a serialized binary object file
* IF SIMULATING READ DEPTH, ALL THESE ARE REQUIRED. Absence indicates not simulating read depth
* readdepth: number of reads per sequence
* readerrorprob: probability of reading a sequence incorrectly
* errcollisionprob: probability of two read errors being identical
*
* Match flags:
* graphFile : name of graph and data file to use as input
@@ -38,247 +48,203 @@ import org.apache.commons.cli.*;
* minpercent : (optional) the minimum percent overlap to attempt a matching.
* writefile : (optional) the filename to write results to
* output : the values to print to System.out for piping
* pv : (optional) calculate p-values
*
*/
public class CommandLineInterface {
public static void startCLI(String[] args) {
//These command line options are a big mess
//Really, I don't think command line tools are expected to work in this many different modes
//making cells, making plates, and matching are the sort of thing that UNIX philosophy would say
//should be three separate programs.
//There might be a way to do it with option parameters?
//main options set
Options mainOptions = new Options();
Option makeCells = Option.builder("cells")
.longOpt("make-cells")
.desc("Makes a file of distinct cells")
.build();
Option makePlate = Option.builder("plates")
.longOpt("make-plates")
.desc("Makes a sample plate file")
.build();
Option makeGraph = Option.builder("graph")
.longOpt("make-graph")
.desc("Makes a graph and data file")
.build();
Option matchCDR3 = Option.builder("match")
.longOpt("match-cdr3")
.desc("Match CDR3s. Requires a cell sample file and any number of plate files.")
.build();
OptionGroup mainGroup = new OptionGroup();
mainGroup.addOption(makeCells);
mainGroup.addOption(makePlate);
mainGroup.addOption(makeGraph);
mainGroup.addOption(matchCDR3);
mainGroup.setRequired(true);
mainOptions.addOptionGroup(mainGroup);
//Reuse clones of this for other options groups, rather than making it lots of times
Option outputFile = Option.builder("o")
.longOpt("output-file")
.hasArg()
.argName("filename")
.desc("Name of output file")
.build();
mainOptions.addOption(outputFile);
//Options cellOptions = new Options();
Option numCells = Option.builder("nc")
.longOpt("num-cells")
.desc("The number of distinct cells to generate")
.hasArg()
.argName("number")
.build();
mainOptions.addOption(numCells);
Option cdr1Freq = Option.builder("d")
.longOpt("peptide-diversity-factor")
.hasArg()
.argName("number")
.desc("Number of distinct CDR3s for every CDR1")
.build();
mainOptions.addOption(cdr1Freq);
//Option cellOutput = (Option) outputFile.clone();
//cellOutput.setRequired(true);
//mainOptions.addOption(cellOutput);
//Options plateOptions = new Options();
Option inputCells = Option.builder("c")
.longOpt("cell-file")
.hasArg()
.argName("file")
.desc("The cell sample file used for filling wells")
.build();
mainOptions.addOption(inputCells);
Option numWells = Option.builder("w")
.longOpt("num-wells")
.hasArg()
.argName("number")
.desc("The number of wells on each plate")
.build();
mainOptions.addOption(numWells);
Option numPlates = Option.builder("np")
.longOpt("num-plates")
.hasArg()
.argName("number")
.desc("The number of plate files to output")
.build();
mainOptions.addOption(numPlates);
//Option plateOutput = (Option) outputFile.clone();
//plateOutput.setRequired(true);
//plateOutput.setDescription("Prefix for plate output filenames");
//mainOptions.addOption(plateOutput);
Option plateErr = Option.builder("err")
.longOpt("drop-out-rate")
.hasArg()
.argName("number")
.desc("Well drop-out rate. (Probability between 0 and 1)")
.build();
mainOptions.addOption(plateErr);
Option plateConcentrations = Option.builder("t")
.longOpt("t-cells-per-well")
.hasArgs()
.argName("number 1, number 2, ...")
.desc("Number of T cells per well for each plate section")
.build();
mainOptions.addOption(plateConcentrations);
//different distributions, mutually exclusive
OptionGroup plateDistributions = new OptionGroup();
Option plateExp = Option.builder("exponential")
.desc("Sample from distinct cells with exponential frequency distribution")
.build();
plateDistributions.addOption(plateExp);
Option plateGaussian = Option.builder("gaussian")
.desc("Sample from distinct cells with gaussain frequency distribution")
.build();
plateDistributions.addOption(plateGaussian);
Option platePoisson = Option.builder("poisson")
.desc("Sample from distinct cells with poisson frequency distribution")
.build();
plateDistributions.addOption(platePoisson);
mainOptions.addOptionGroup(plateDistributions);
Option plateStdDev = Option.builder("stddev")
.desc("Standard deviation for gaussian distribution")
.hasArg()
.argName("number")
.build();
mainOptions.addOption(plateStdDev);
Option plateLambda = Option.builder("lambda")
.desc("Lambda for exponential distribution")
.hasArg()
.argName("number")
.build();
mainOptions.addOption(plateLambda);
//
// String cellFile, String filename, Double stdDev,
// Integer numWells, Integer numSections,
// Integer[] concentrations, Double dropOutRate
//
//Options matchOptions = new Options();
inputCells.setDescription("The cell sample file to be used for matching.");
mainOptions.addOption(inputCells);
Option lowThresh = Option.builder("low")
.longOpt("low-threshold")
.hasArg()
.argName("number")
.desc("Sets the minimum occupancy overlap to attempt matching")
.build();
mainOptions.addOption(lowThresh);
Option highThresh = Option.builder("high")
.longOpt("high-threshold")
.hasArg()
.argName("number")
.desc("Sets the maximum occupancy overlap to attempt matching")
.build();
mainOptions.addOption(highThresh);
Option occDiff = Option.builder("occdiff")
.longOpt("occupancy-difference")
.hasArg()
.argName("Number")
.desc("Maximum difference in alpha/beta occupancy to attempt matching")
.build();
mainOptions.addOption(occDiff);
Option overlapPer = Option.builder("ovper")
.longOpt("overlap-percent")
.hasArg()
.argName("Percent")
.desc("Minimum overlap percent to attempt matching (0 -100)")
.build();
mainOptions.addOption(overlapPer);
Option inputPlates = Option.builder("p")
.longOpt("plate-files")
.hasArgs()
.desc("Plate files to match")
.build();
mainOptions.addOption(inputPlates);
//Options sets for the different modes
Options mainOptions = buildMainOptions();
Options cellOptions = buildCellOptions();
Options plateOptions = buildPlateOptions();
Options graphOptions = buildGraphOptions();
Options matchOptions = buildMatchCDR3options();
CommandLineParser parser = new DefaultParser();
try {
CommandLine line = parser.parse(mainOptions, args);
if(line.hasOption("match")){
//line = parser.parse(mainOptions, args);
//String cellFile = line.getOptionValue("c");
String graphFile = line.getOptionValue("g");
Integer lowThreshold = Integer.valueOf(line.getOptionValue(lowThresh));
Integer highThreshold = Integer.valueOf(line.getOptionValue(highThresh));
Integer occupancyDifference = Integer.valueOf(line.getOptionValue(occDiff));
Integer overlapPercent = Integer.valueOf(line.getOptionValue(overlapPer));
for(String plate: line.getOptionValues("p")) {
matchCDR3s(graphFile, lowThreshold, highThreshold, occupancyDifference, overlapPercent);
}
try{
CommandLine line = parser.parse(mainOptions, Arrays.copyOfRange(args, 0, 1));
if (line.hasOption("help")) {
HelpFormatter formatter = new HelpFormatter();
formatter.printHelp("BiGpairSEQ_Sim.jar", mainOptions);
System.out.println();
formatter.printHelp("BiGpairSEQ_Sim.jar -cells", cellOptions);
System.out.println();
formatter.printHelp("BiGpairSEQ_Sim.jar -plate", plateOptions);
System.out.println();
formatter.printHelp("BiGpairSEQ_Sim.jar -graph", graphOptions);
System.out.println();
formatter.printHelp("BiGpairSEQ_Sim.jar -match", matchOptions);
}
else if(line.hasOption("cells")){
//line = parser.parse(mainOptions, args);
else if (line.hasOption("version")) {
System.out.println("BiGpairSEQ_Sim " + BiGpairSEQ.getVersion());
}
else if (line.hasOption("cells")) {
line = parser.parse(cellOptions, Arrays.copyOfRange(args, 1, args.length));
Integer number = Integer.valueOf(line.getOptionValue("n"));
Integer diversity = Integer.valueOf(line.getOptionValue("d"));
String filename = line.getOptionValue("o");
Integer numDistCells = Integer.valueOf(line.getOptionValue("nc"));
Integer freq = Integer.valueOf(line.getOptionValue("d"));
makeCells(filename, numDistCells, freq);
makeCells(filename, number, diversity);
}
else if(line.hasOption("plates")){
//line = parser.parse(mainOptions, args);
String cellFile = line.getOptionValue("c");
String filenamePrefix = line.getOptionValue("o");
Integer numWellsOnPlate = Integer.valueOf(line.getOptionValue("w"));
Integer numPlatesToMake = Integer.valueOf(line.getOptionValue("np"));
String[] concentrationsToUseString = line.getOptionValues("t");
Integer numSections = concentrationsToUseString.length;
Integer[] concentrationsToUse = new Integer[numSections];
for(int i = 0; i <numSections; i++){
concentrationsToUse[i] = Integer.valueOf(concentrationsToUseString[i]);
else if (line.hasOption("plate")) {
line = parser.parse(plateOptions, Arrays.copyOfRange(args, 1, args.length));
//get the cells
String cellFilename = line.getOptionValue("c");
CellSample cells = getCells(cellFilename);
//get the rest of the parameters
Integer[] populations;
String outputFilename = line.getOptionValue("o");
Integer numWells = Integer.parseInt(line.getOptionValue("w"));
Double dropoutRate = Double.parseDouble(line.getOptionValue("d"));
if (line.hasOption("random")) {
//Array holding values of minimum and maximum populations
Integer[] min_max = Stream.of(line.getOptionValues("random"))
.mapToInt(Integer::parseInt)
.boxed()
.toArray(Integer[]::new);
populations = BiGpairSEQ.getRand().ints(min_max[0], min_max[1] + 1)
.limit(numWells)
.boxed()
.toArray(Integer[]::new);
}
Double dropOutRate = Double.valueOf(line.getOptionValue("err"));
if(line.hasOption("exponential")){
Double lambda = Double.valueOf(line.getOptionValue("lambda"));
for(int i = 1; i <= numPlatesToMake; i++){
makePlateExp(cellFile, filenamePrefix + i, lambda, numWellsOnPlate,
concentrationsToUse,dropOutRate);
}
else if (line.hasOption("pop")) {
populations = Stream.of(line.getOptionValues("pop"))
.mapToInt(Integer::parseInt)
.boxed()
.toArray(Integer[]::new);
}
else if(line.hasOption("gaussian")){
Double stdDev = Double.valueOf(line.getOptionValue("std-dev"));
for(int i = 1; i <= numPlatesToMake; i++){
makePlate(cellFile, filenamePrefix + i, stdDev, numWellsOnPlate,
concentrationsToUse,dropOutRate);
}
else{
populations = new Integer[1];
populations[0] = 1;
}
//make the plate
Plate plate;
if (line.hasOption("poisson")) {
Double stdDev = Math.sqrt(numWells);
plate = new Plate(cells, cellFilename, numWells, populations, dropoutRate, stdDev);
}
else if (line.hasOption("gaussian")) {
Double stdDev = Double.parseDouble(line.getOptionValue("stddev"));
plate = new Plate(cells, cellFilename, numWells, populations, dropoutRate, stdDev);
}
else if (line.hasOption("zipf")) {
Double zipfExponent = Double.parseDouble(line.getOptionValue("exp"));
plate = new Plate(cells, cellFilename, numWells, populations, dropoutRate, zipfExponent);
}
else {
assert line.hasOption("exponential");
Double lambda = Double.parseDouble(line.getOptionValue("lambda"));
plate = new Plate(cells, cellFilename, numWells, populations, dropoutRate, lambda);
}
PlateFileWriter writer = new PlateFileWriter(outputFilename, plate);
writer.writePlateFile();
}
else if (line.hasOption("graph")) { //Making a graph
line = parser.parse(graphOptions, Arrays.copyOfRange(args, 1, args.length));
String cellFilename = line.getOptionValue("c");
String plateFilename = line.getOptionValue("p");
String outputFilename = line.getOptionValue("o");
//get cells
CellSample cells = getCells(cellFilename);
//get plate
Plate plate = getPlate(plateFilename);
GraphWithMapData graph;
Integer readDepth = 1;
Double readErrorRate = 0.0;
Double errorCollisionRate = 0.0;
Double realSequenceCollisionRate = 0.0;
if (line.hasOption("rd")) {
readDepth = Integer.parseInt(line.getOptionValue("rd"));
}
else if(line.hasOption("poisson")){
for(int i = 1; i <= numPlatesToMake; i++){
makePlatePoisson(cellFile, filenamePrefix + i, numWellsOnPlate,
concentrationsToUse,dropOutRate);
if (line.hasOption("err")) {
readErrorRate = Double.parseDouble(line.getOptionValue("err"));
}
if (line.hasOption("errcoll")) {
errorCollisionRate = Double.parseDouble(line.getOptionValue("errcoll"));
}
if (line.hasOption("realcoll")) {
realSequenceCollisionRate = Double.parseDouble(line.getOptionValue("realcoll"));
}
graph = Simulator.makeCDR3Graph(cells, plate, readDepth, readErrorRate, errorCollisionRate,
realSequenceCollisionRate, false);
if (!line.hasOption("no-binary")) { //output binary file unless told not to
GraphDataObjectWriter writer = new GraphDataObjectWriter(outputFilename, graph, false);
writer.writeDataToFile();
}
if (line.hasOption("graphml")) { //if told to, output graphml file
GraphMLFileWriter gmlwriter = new GraphMLFileWriter(outputFilename, graph);
gmlwriter.writeGraphToFile();
}
}
else if (line.hasOption("match")) { //can add a flag for which match type in future, spit this in two
line = parser.parse(matchOptions, Arrays.copyOfRange(args, 1, args.length));
String graphFilename = line.getOptionValue("g");
String outputFilename;
if(line.hasOption("o")) {
outputFilename = line.getOptionValue("o");
}
else {
outputFilename = null;
}
Integer minThreshold = Integer.parseInt(line.getOptionValue("min"));
Integer maxThreshold = Integer.parseInt(line.getOptionValue("max"));
int minOverlapPct;
if (line.hasOption("minpct")) { //see if this filter is being used
minOverlapPct = Integer.parseInt(line.getOptionValue("minpct"));
}
else {
minOverlapPct = 0;
}
int maxOccupancyDiff;
if (line.hasOption("maxdiff")) { //see if this filter is being used
maxOccupancyDiff = Integer.parseInt(line.getOptionValue("maxdiff"));
}
else {
maxOccupancyDiff = Integer.MAX_VALUE;
}
if (line.hasOption("pv")) {
BiGpairSEQ.setCalculatePValue(true);
}
GraphWithMapData graph = getGraph(graphFilename);
MatchingResult result = Simulator.matchCDR3s(graph, graphFilename, minThreshold, maxThreshold,
maxOccupancyDiff, minOverlapPct, false, BiGpairSEQ.calculatePValue());
if(outputFilename != null){
MatchingFileWriter writer = new MatchingFileWriter(outputFilename, result);
writer.writeResultsToFile();
}
//can put a bunch of ifs for outputting various things from the MatchingResult to System.out here
//after I put those flags in the matchOptions
if(line.hasOption("print-metadata")) {
for (String k : result.getMetadata().keySet()) {
System.out.println(k + ": " + result.getMetadata().get(k));
}
}
if(line.hasOption("print-error")) {
System.out.println("pairing error rate: " + result.getPairingErrorRate());
}
if(line.hasOption("print-attempt")) {
System.out.println("pairing attempt rate: " +result.getPairingAttemptRate());
}
if(line.hasOption("print-correct")) {
System.out.println("correct pairings: " + result.getCorrectPairingCount());
}
if(line.hasOption("print-incorrect")) {
System.out.println("incorrect pairings: " + result.getIncorrectPairingCount());
}
if(line.hasOption("print-alphas")) {
System.out.println("total alphas found: " + result.getAlphaCount());
}
if(line.hasOption("print-betas")) {
System.out.println("total betas found: " + result.getBetaCount());
}
if(line.hasOption("print-time")) {
System.out.println("simulation time (seconds): " + result.getSimulationTime());
}
}
}
catch (ParseException exp) {
@@ -286,43 +252,324 @@ public class CommandLineInterface {
}
}
private static Option outputFileOption() {
Option outputFile = Option.builder("o")
.longOpt("output-file")
.hasArg()
.argName("filename")
.desc("Name of output file")
.required()
.build();
return outputFile;
}
private static Options buildMainOptions() {
Options mainOptions = new Options();
Option help = Option.builder("help")
.desc("Displays this help menu")
.build();
Option makeCells = Option.builder("cells")
.longOpt("make-cells")
.desc("Makes a cell sample file of distinct T cells")
.build();
Option makePlate = Option.builder("plate")
.longOpt("make-plate")
.desc("Makes a sample plate file. Requires a cell sample file.")
.build();
Option makeGraph = Option.builder("graph")
.longOpt("make-graph")
.desc("Makes a graph/data file. Requires a cell sample file and a sample plate file")
.build();
Option matchCDR3 = Option.builder("match")
.longOpt("match-cdr3")
.desc("Matches CDR3s. Requires a graph/data file.")
.build();
Option printVersion = Option.builder("version")
.desc("Prints the program version number to stdout").build();
OptionGroup mainGroup = new OptionGroup();
mainGroup.addOption(help);
mainGroup.addOption(printVersion);
mainGroup.addOption(makeCells);
mainGroup.addOption(makePlate);
mainGroup.addOption(makeGraph);
mainGroup.addOption(matchCDR3);
mainGroup.setRequired(true);
mainOptions.addOptionGroup(mainGroup);
return mainOptions;
}
private static Options buildCellOptions() {
Options cellOptions = new Options();
Option numCells = Option.builder("n")
.longOpt("num-cells")
.desc("The number of distinct cells to generate")
.hasArg()
.argName("number")
.required().build();
Option cdr3Diversity = Option.builder("d")
.longOpt("diversity-factor")
.desc("The factor by which unique CDR3s outnumber unique CDR1s")
.hasArg()
.argName("factor")
.required().build();
cellOptions.addOption(numCells);
cellOptions.addOption(cdr3Diversity);
cellOptions.addOption(outputFileOption());
return cellOptions;
}
private static Options buildPlateOptions() {
Options plateOptions = new Options();
Option cellFile = Option.builder("c") // add this to plate options
.longOpt("cell-file")
.desc("The cell sample file to use")
.hasArg()
.argName("filename")
.required().build();
Option numWells = Option.builder("w")// add this to plate options
.longOpt("wells")
.desc("The number of wells on the sample plate")
.hasArg()
.argName("number")
.required().build();
//options group for choosing with distribution to use
OptionGroup distributions = new OptionGroup();// add this to plate options
distributions.setRequired(true);
Option poisson = Option.builder("poisson")
.desc("Use a Poisson distribution for cell sample")
.build();
Option gaussian = Option.builder("gaussian")
.desc("Use a Gaussian distribution for cell sample")
.build();
Option exponential = Option.builder("exponential")
.desc("Use an exponential distribution for cell sample")
.build();
Option zipf = Option.builder("zipf")
.desc("Use a Zipf distribution for cell sample")
.build();
distributions.addOption(poisson);
distributions.addOption(gaussian);
distributions.addOption(exponential);
distributions.addOption(zipf);
//options group for statistical distribution parameters
OptionGroup statParams = new OptionGroup();// add this to plate options
Option stdDev = Option.builder("stddev")
.desc("If using -gaussian flag, standard deviation for distrbution")
.hasArg()
.argName("value")
.build();
Option lambda = Option.builder("lambda")
.desc("If using -exponential flag, lambda value for distribution")
.hasArg()
.argName("value")
.build();
Option zipfExponent = Option.builder("exp")
.desc("If using -zipf flag, exponent value for distribution")
.hasArg()
.argName("value")
.build();
statParams.addOption(stdDev);
statParams.addOption(lambda);
//Option group for random plate or set populations
OptionGroup wellPopOptions = new OptionGroup(); // add this to plate options
wellPopOptions.setRequired(true);
Option randomWellPopulations = Option.builder("random")
.desc("Randomize well populations on sample plate. Takes two arguments: the minimum possible population and the maximum possible population.")
.hasArgs()
.numberOfArgs(2)
.argName("min> <max")
.build();
Option specificWellPopulations = Option.builder("pop")
.desc("The well populations for each section of the sample plate. There will be as many sections as there are populations given.")
.hasArgs()
.argName("number [number]...")
.build();
Option dropoutRate = Option.builder("d") //add this to plate options
.longOpt("dropout-rate")
.hasArg()
.desc("The sequence dropout rate due to amplification error. (0.0 - 1.0)")
.argName("rate")
.required()
.build();
wellPopOptions.addOption(randomWellPopulations);
wellPopOptions.addOption(specificWellPopulations);
plateOptions.addOption(cellFile);
plateOptions.addOption(numWells);
plateOptions.addOptionGroup(distributions);
plateOptions.addOptionGroup(statParams);
plateOptions.addOptionGroup(wellPopOptions);
plateOptions.addOption(dropoutRate);
plateOptions.addOption(zipfExponent);
plateOptions.addOption(outputFileOption());
return plateOptions;
}
private static Options buildGraphOptions() {
Options graphOptions = new Options();
Option cellFilename = Option.builder("c")
.longOpt("cell-file")
.desc("Cell sample file to use for checking pairing accuracy")
.hasArg()
.argName("filename")
.required().build();
Option plateFilename = Option.builder("p")
.longOpt("plate-filename")
.desc("Sample plate file from which to construct graph")
.hasArg()
.argName("filename")
.required().build();
Option outputGraphML = Option.builder("graphml")
.desc("(Optional) Output GraphML file")
.build();
Option outputSerializedBinary = Option.builder("nb")
.longOpt("no-binary")
.desc("(Optional) Don't output serialized binary file")
.build();
Option readDepth = Option.builder("rd")
.longOpt("read-depth")
.desc("(Optional) The number of times to read each sequence.")
.hasArg()
.argName("depth")
.build();
Option readErrorProb = Option.builder("err")
.longOpt("read-error-prob")
.desc("(Optional) The probability that a sequence will be misread. (0.0 - 1.0)")
.hasArg()
.argName("prob")
.build();
Option errorCollisionProb = Option.builder("errcoll")
.longOpt("error-collision-prob")
.desc("(Optional) The probability that two misreads will produce the same spurious sequence. (0.0 - 1.0)")
.hasArg()
.argName("prob")
.build();
Option realSequenceCollisionProb = Option.builder("realcoll")
.longOpt("real-collision-prob")
.desc("(Optional) The probability that a sequence will be misread " +
"as another real sequence. (Only applies to unique misreads; after this has happened once, " +
"future error collisions could produce the real sequence again) (0.0 - 1.0)")
.hasArg()
.argName("prob")
.build();
graphOptions.addOption(cellFilename);
graphOptions.addOption(plateFilename);
graphOptions.addOption(outputFileOption());
graphOptions.addOption(outputGraphML);
graphOptions.addOption(outputSerializedBinary);
graphOptions.addOption(readDepth);
graphOptions.addOption(readErrorProb);
graphOptions.addOption(errorCollisionProb);
graphOptions.addOption(realSequenceCollisionProb);
return graphOptions;
}
private static Options buildMatchCDR3options() {
Options matchCDR3options = new Options();
Option graphFilename = Option.builder("g")
.longOpt("graph-file")
.desc("The graph/data file to use")
.hasArg()
.argName("filename")
.required().build();
Option minOccupancyOverlap = Option.builder("min")
.desc("The minimum number of shared wells to attempt to match a sequence pair")
.hasArg()
.argName("number")
.required().build();
Option maxOccupancyOverlap = Option.builder("max")
.desc("The maximum number of shared wells to attempt to match a sequence pair")
.hasArg()
.argName("number")
.required().build();
Option minOverlapPercent = Option.builder("minpct")
.desc("(Optional) The minimum percentage of a sequence's total occupancy shared by another sequence to attempt matching. (0 - 100) ")
.hasArg()
.argName("percent")
.build();
Option maxOccupancyDifference = Option.builder("maxdiff")
.desc("(Optional) The maximum difference in total occupancy between two sequences to attempt matching.")
.hasArg()
.argName("number")
.build();
Option outputFile = Option.builder("o") //can't call the method this time, because this one's optional
.longOpt("output-file")
.hasArg()
.argName("filename")
.desc("(Optional) Name of output the output file. If not present, no file will be written.")
.build();
Option pValue = Option.builder("pv") //can't call the method this time, because this one's optional
.longOpt("p-value")
.desc("(Optional) Calculate p-values for sequence pairs.")
.build();
matchCDR3options.addOption(graphFilename)
.addOption(minOccupancyOverlap)
.addOption(maxOccupancyOverlap)
.addOption(minOverlapPercent)
.addOption(maxOccupancyDifference)
.addOption(outputFile)
.addOption(pValue);
//options for output to System.out
Option printAlphaCount = Option.builder().longOpt("print-alphas")
.desc("(Optional) Print the number of distinct alpha sequences to stdout.").build();
Option printBetaCount = Option.builder().longOpt("print-betas")
.desc("(Optional) Print the number of distinct beta sequences to stdout.").build();
Option printTime = Option.builder().longOpt("print-time")
.desc("(Optional) Print the total simulation time to stdout.").build();
Option printErrorRate = Option.builder().longOpt("print-error")
.desc("(Optional) Print the pairing error rate to stdout").build();
Option printAttempt = Option.builder().longOpt("print-attempt")
.desc("(Optional) Print the pairing attempt rate to stdout").build();
Option printCorrect = Option.builder().longOpt("print-correct")
.desc("(Optional) Print the number of correct pairs to stdout").build();
Option printIncorrect = Option.builder().longOpt("print-incorrect")
.desc("(Optional) Print the number of incorrect pairs to stdout").build();
Option printMetadata = Option.builder().longOpt("print-metadata")
.desc("(Optional) Print a full summary of the matching results to stdout.").build();
matchCDR3options
.addOption(printErrorRate)
.addOption(printAttempt)
.addOption(printCorrect)
.addOption(printIncorrect)
.addOption(printMetadata)
.addOption(printAlphaCount)
.addOption(printBetaCount)
.addOption(printTime);
return matchCDR3options;
}
private static CellSample getCells(String cellFilename) {
assert cellFilename != null;
CellFileReader reader = new CellFileReader(cellFilename);
return reader.getCellSample();
}
private static Plate getPlate(String plateFilename) {
assert plateFilename != null;
PlateFileReader reader = new PlateFileReader(plateFilename);
return reader.getSamplePlate();
}
private static GraphWithMapData getGraph(String graphFilename) {
assert graphFilename != null;
try{
GraphDataObjectReader reader = new GraphDataObjectReader(graphFilename, false);
return reader.getData();
}
catch (IOException ex) {
ex.printStackTrace();
return null;
}
}
//for calling from command line
public static void makeCells(String filename, Integer numCells, Integer cdr1Freq){
CellSample sample = Simulator.generateCellSample(numCells, cdr1Freq);
public static void makeCells(String filename, Integer numCells, Integer cdr1Freq) {
CellSample sample = new CellSample(numCells, cdr1Freq);
CellFileWriter writer = new CellFileWriter(filename, sample);
writer.writeCellsToFile();
}
public static void makePlateExp(String cellFile, String filename, Double lambda,
Integer numWells, Integer[] concentrations, Double dropOutRate){
CellFileReader cellReader = new CellFileReader(cellFile);
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
samplePlate.fillWellsExponential(cellReader.getFilename(), cellReader.getCells(), lambda);
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
writer.writePlateFile();
}
private static void makePlatePoisson(String cellFile, String filename, Integer numWells,
Integer[] concentrations, Double dropOutRate){
CellFileReader cellReader = new CellFileReader(cellFile);
Double stdDev = Math.sqrt(cellReader.getCellCount());
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
samplePlate.fillWells(cellReader.getFilename(), cellReader.getCells(), stdDev);
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
writer.writePlateFile();
}
private static void makePlate(String cellFile, String filename, Double stdDev,
Integer numWells, Integer[] concentrations, Double dropOutRate){
CellFileReader cellReader = new CellFileReader(cellFile);
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
samplePlate.fillWells(cellReader.getFilename(), cellReader.getCells(), stdDev);
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
writer.writePlateFile();
}
private static void matchCDR3s(String graphFile, Integer lowThreshold, Integer highThreshold,
Integer occupancyDifference, Integer overlapPercent) {
}
}

View File

@@ -0,0 +1,6 @@
public enum DistributionType {
POISSON,
GAUSSIAN,
EXPONENTIAL,
ZIPF
}

View File

@@ -4,10 +4,6 @@ import java.math.MathContext;
public abstract class Equations {
public static int getRandomNumber(int min, int max) {
return (int) ((Math.random() * (max - min)) + min);
}
//pValue calculation as described in original pairSEQ paper.
//Included for comparison with original results.
//Not used by BiGpairSEQ for matching.

View File

@@ -1,10 +1,12 @@
import java.io.*;
public class GraphDataObjectReader {
private GraphWithMapData data;
private String filename;
public GraphDataObjectReader(String filename) throws IOException {
public GraphDataObjectReader(String filename, boolean verbose) throws IOException {
if(!filename.matches(".*\\.ser")){
filename = filename + ".ser";
}
@@ -13,10 +15,13 @@ public class GraphDataObjectReader {
BufferedInputStream fileIn = new BufferedInputStream(new FileInputStream(filename));
ObjectInputStream in = new ObjectInputStream(fileIn))
{
System.out.println("Reading graph data from file. This may take some time");
System.out.println("File I/O time is not included in results");
if (verbose) {
System.out.println("Reading graph data from file. This may take some time");
System.out.println("File I/O time is not included in results");
}
data = (GraphWithMapData) in.readObject();
} catch (FileNotFoundException | ClassNotFoundException ex) {
System.out.println("Graph/data file " + filename + " not found.");
ex.printStackTrace();
}
}

View File

@@ -1,3 +1,5 @@
import org.jgrapht.Graph;
import java.io.BufferedOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;
@@ -7,6 +9,7 @@ public class GraphDataObjectWriter {
private GraphWithMapData data;
private String filename;
private boolean verbose = true;
public GraphDataObjectWriter(String filename, GraphWithMapData data) {
if(!filename.matches(".*\\.ser")){
@@ -16,13 +19,24 @@ public class GraphDataObjectWriter {
this.data = data;
}
public GraphDataObjectWriter(String filename, GraphWithMapData data, boolean verbose) {
this.verbose = verbose;
if(!filename.matches(".*\\.ser")){
filename = filename + ".ser";
}
this.filename = filename;
this.data = data;
}
public void writeDataToFile() {
try (BufferedOutputStream bufferedOut = new BufferedOutputStream(new FileOutputStream(filename));
ObjectOutputStream out = new ObjectOutputStream(bufferedOut);
){
System.out.println("Writing graph and occupancy data to file. This may take some time.");
System.out.println("File I/O time is not included in results.");
if(verbose) {
System.out.println("Writing graph and occupancy data to file. This may take some time.");
System.out.println("File I/O time is not included in results.");
}
out.writeObject(data);
} catch (IOException ex) {
ex.printStackTrace();

View File

@@ -1,35 +0,0 @@
import org.jgrapht.graph.SimpleWeightedGraph;
import org.jgrapht.nio.graphml.GraphMLImporter;
import java.io.BufferedReader;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
public class GraphMLFileReader {
private String filename;
private SimpleWeightedGraph graph;
public GraphMLFileReader(String filename, SimpleWeightedGraph graph) {
if(!filename.matches(".*\\.graphml")){
filename = filename + ".graphml";
}
this.filename = filename;
this.graph = graph;
try(//don't need to close reader bc of try-with-resources auto-closing
BufferedReader reader = Files.newBufferedReader(Path.of(filename));
){
GraphMLImporter<SimpleWeightedGraph, BufferedReader> importer = new GraphMLImporter<>();
importer.importGraph(graph, reader);
}
catch (IOException ex) {
System.out.println("Graph file " + filename + " not found.");
System.err.println(ex);
}
}
public SimpleWeightedGraph getGraph() { return graph; }
}

View File

@@ -1,20 +1,38 @@
import org.jgrapht.graph.DefaultWeightedEdge;
import org.jgrapht.graph.SimpleWeightedGraph;
import org.jgrapht.nio.dot.DOTExporter;
import org.jgrapht.nio.Attribute;
import org.jgrapht.nio.AttributeType;
import org.jgrapht.nio.DefaultAttribute;
import org.jgrapht.nio.graphml.GraphMLExporter;
import org.jgrapht.nio.graphml.GraphMLExporter.AttributeCategory;
import java.io.BufferedWriter;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.StandardOpenOption;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
public class GraphMLFileWriter {
String filename;
SimpleWeightedGraph graph;
GraphWithMapData data;
Map<String, Attribute> graphAttributes;
public GraphMLFileWriter(String filename, GraphWithMapData data) {
if(!filename.matches(".*\\.graphml")){
filename = filename + ".graphml";
}
this.filename = filename;
this.data = data;
this.graph = data.getGraph();
graphAttributes = createGraphAttributes();
}
public GraphMLFileWriter(String filename, SimpleWeightedGraph graph) {
public GraphMLFileWriter(String filename, SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph) {
if(!filename.matches(".*\\.graphml")){
filename = filename + ".graphml";
}
@@ -22,10 +40,75 @@ public class GraphMLFileWriter {
this.graph = graph;
}
private Map<String, Attribute> createGraphAttributes(){
Map<String, Attribute> attributes = new HashMap<>();
//Sample plate filename
attributes.put("sample plate filename", DefaultAttribute.createAttribute(data.getPlateFilename()));
// Number of wells
attributes.put("well count", DefaultAttribute.createAttribute(data.getNumWells().toString()));
//Well populations
Integer[] wellPopulations = data.getWellPopulations();
StringBuilder populationsStringBuilder = new StringBuilder();
populationsStringBuilder.append(wellPopulations[0].toString());
for(int i = 1; i < wellPopulations.length; i++){
populationsStringBuilder.append(", ");
populationsStringBuilder.append(wellPopulations[i].toString());
}
String wellPopulationsString = populationsStringBuilder.toString();
attributes.put("well populations", DefaultAttribute.createAttribute(wellPopulationsString));
attributes.put("read depth", DefaultAttribute.createAttribute(data.getReadDepth().toString()));
attributes.put("read error rate", DefaultAttribute.createAttribute(data.getReadErrorRate().toString()));
attributes.put("error collision rate", DefaultAttribute.createAttribute(data.getErrorCollisionRate().toString()));
attributes.put("real sequence collision rate", DefaultAttribute.createAttribute(data.getRealSequenceCollisionRate()));
return attributes;
}
private Map<String, Attribute> createVertexAttributes(Vertex v){
Map<String, Attribute> attributes = new HashMap<>();
//sequence type
attributes.put("type", DefaultAttribute.createAttribute(v.getType().name()));
//sequence
attributes.put("sequence", DefaultAttribute.createAttribute(v.getSequence()));
//number of wells the sequence appears in
attributes.put("occupancy", DefaultAttribute.createAttribute(v.getOccupancy()));
//total number of times the sequence was read
attributes.put("total read count", DefaultAttribute.createAttribute(v.getReadCount()));
StringBuilder wellsAndReadCountsBuilder = new StringBuilder();
Iterator<Map.Entry<Integer, Integer>> wellOccupancies = v.getWellOccupancies().entrySet().iterator();
while (wellOccupancies.hasNext()) {
Map.Entry<Integer, Integer> entry = wellOccupancies.next();
wellsAndReadCountsBuilder.append(entry.getKey() + ":" + entry.getValue());
if (wellOccupancies.hasNext()) {
wellsAndReadCountsBuilder.append(", ");
}
}
String wellsAndReadCounts = wellsAndReadCountsBuilder.toString();
//the wells the sequence appears in and the read counts in those wells
attributes.put("wells:read counts", DefaultAttribute.createAttribute(wellsAndReadCounts));
return attributes;
}
public void writeGraphToFile() {
try(BufferedWriter writer = Files.newBufferedWriter(Path.of(filename), StandardOpenOption.CREATE_NEW);
){
GraphMLExporter<SimpleWeightedGraph, BufferedWriter> exporter = new GraphMLExporter<>();
//create exporter. Let the vertex labels be the unique ids for the vertices
GraphMLExporter<Vertex, SimpleWeightedGraph<Vertex, DefaultWeightedEdge>> exporter = new GraphMLExporter<>(v -> v.getVertexLabel().toString());
//set to export weights
exporter.setExportEdgeWeights(true);
//Set graph attributes
exporter.setGraphAttributeProvider( () -> graphAttributes);
//set type, sequence, and occupancy attributes for each vertex
exporter.setVertexAttributeProvider(this::createVertexAttributes);
//register the attributes
for(String s : graphAttributes.keySet()) {
exporter.registerAttribute(s, AttributeCategory.GRAPH, AttributeType.STRING);
}
exporter.registerAttribute("type", AttributeCategory.NODE, AttributeType.STRING);
exporter.registerAttribute("sequence", AttributeCategory.NODE, AttributeType.STRING);
exporter.registerAttribute("occupancy", AttributeCategory.NODE, AttributeType.STRING);
exporter.registerAttribute("total read count", AttributeCategory.NODE, AttributeType.STRING);
exporter.registerAttribute("wells:read counts", AttributeCategory.NODE, AttributeType.STRING);
//export the graph
exporter.exportGraph(graph, writer);
} catch(IOException ex){
System.out.println("Could not make new file named "+filename);

View File

@@ -1,90 +1,111 @@
import org.jgrapht.graph.DefaultWeightedEdge;
import org.jgrapht.graph.SimpleWeightedGraph;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.*;
public abstract class GraphModificationFunctions {
public interface GraphModificationFunctions {
//remove over- and under-weight edges
public static List<Integer[]> filterByOverlapThresholds(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
int low, int high) {
List<Integer[]> removedEdges = new ArrayList<>();
for(DefaultWeightedEdge e: graph.edgeSet()){
if ((graph.getEdgeWeight(e) > high) || (graph.getEdgeWeight(e) < low)){
Integer source = graph.getEdgeSource(e);
Integer target = graph.getEdgeTarget(e);
Integer weight = (int) graph.getEdgeWeight(e);
Integer[] edge = {source, target, weight};
removedEdges.add(edge);
//remove over- and under-weight edges, return removed edges
static Map<DefaultWeightedEdge, Vertex[]> filterByOverlapThresholds(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
int low, int high, boolean saveEdges) {
Map<DefaultWeightedEdge, Vertex[]> removedEdges = new HashMap<>();
Set<DefaultWeightedEdge> edgesToRemove = new HashSet<>();
for (DefaultWeightedEdge e : graph.edgeSet()) {
if ((graph.getEdgeWeight(e) > high) || (graph.getEdgeWeight(e) < low)) {
if(saveEdges) {
Vertex[] vertices = {graph.getEdgeSource(e), graph.getEdgeTarget(e)};
removedEdges.put(e, vertices);
}
edgesToRemove.add(e);
}
}
for (Integer[] edge : removedEdges) {
graph.removeEdge(edge[0], edge[1]);
}
edgesToRemove.forEach(graph::removeEdge);
return removedEdges;
}
//Remove edges for pairs with large occupancy discrepancy
public static List<Integer[]> filterByRelativeOccupancy(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
Map<Integer, Integer> alphaWellCounts,
Map<Integer, Integer> betaWellCounts,
Map<Integer, Integer> plateVtoAMap,
Map<Integer, Integer> plateVtoBMap,
Integer maxOccupancyDifference) {
List<Integer[]> removedEdges = new ArrayList<>();
//Remove edges for pairs with large occupancy discrepancy, return removed edges
static Map<DefaultWeightedEdge, Vertex[]> filterByRelativeOccupancy(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
Integer maxOccupancyDifference, boolean saveEdges) {
Map<DefaultWeightedEdge, Vertex[]> removedEdges = new HashMap<>();
Set<DefaultWeightedEdge> edgesToRemove = new HashSet<>();
for (DefaultWeightedEdge e : graph.edgeSet()) {
Integer alphaOcc = alphaWellCounts.get(plateVtoAMap.get(graph.getEdgeSource(e)));
Integer betaOcc = betaWellCounts.get(plateVtoBMap.get(graph.getEdgeTarget(e)));
Integer alphaOcc = graph.getEdgeSource(e).getOccupancy();
Integer betaOcc = graph.getEdgeTarget(e).getOccupancy();
if (Math.abs(alphaOcc - betaOcc) >= maxOccupancyDifference) {
Integer source = graph.getEdgeSource(e);
Integer target = graph.getEdgeTarget(e);
Integer weight = (int) graph.getEdgeWeight(e);
Integer[] edge = {source, target, weight};
removedEdges.add(edge);
if (saveEdges) {
Vertex[] vertices = {graph.getEdgeSource(e), graph.getEdgeTarget(e)};
removedEdges.put(e, vertices);
}
edgesToRemove.add(e);
}
}
for (Integer[] edge : removedEdges) {
graph.removeEdge(edge[0], edge[1]);
}
edgesToRemove.forEach(graph::removeEdge);
return removedEdges;
}
//Remove edges for pairs where overlap size is significantly lower than the well occupancy
public static List<Integer[]> filterByOverlapPercent(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
Map<Integer, Integer> alphaWellCounts,
Map<Integer, Integer> betaWellCounts,
Map<Integer, Integer> plateVtoAMap,
Map<Integer, Integer> plateVtoBMap,
Integer minOverlapPercent) {
List<Integer[]> removedEdges = new ArrayList<>();
//Remove edges for pairs where overlap size is significantly lower than the well occupancy, return removed edges
static Map<DefaultWeightedEdge, Vertex[]> filterByOverlapPercent(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
Integer minOverlapPercent,
boolean saveEdges) {
Map<DefaultWeightedEdge, Vertex[]> removedEdges = new HashMap<>();
Set<DefaultWeightedEdge> edgesToRemove = new HashSet<>();
for (DefaultWeightedEdge e : graph.edgeSet()) {
Integer alphaOcc = alphaWellCounts.get(plateVtoAMap.get(graph.getEdgeSource(e)));
Integer betaOcc = betaWellCounts.get(plateVtoBMap.get(graph.getEdgeTarget(e)));
Integer alphaOcc = graph.getEdgeSource(e).getOccupancy();
Integer betaOcc = graph.getEdgeTarget(e).getOccupancy();
double weight = graph.getEdgeWeight(e);
double min = minOverlapPercent / 100.0;
if ((weight / alphaOcc < min) || (weight / betaOcc < min)) {
Integer source = graph.getEdgeSource(e);
Integer target = graph.getEdgeTarget(e);
Integer intWeight = (int) graph.getEdgeWeight(e);
Integer[] edge = {source, target, intWeight};
removedEdges.add(edge);
if (saveEdges) {
Vertex[] vertices = {graph.getEdgeSource(e), graph.getEdgeTarget(e)};
removedEdges.put(e, vertices);
}
edgesToRemove.add(e);
}
}
for (Integer[] edge : removedEdges) {
graph.removeEdge(edge[0], edge[1]);
edgesToRemove.forEach(graph::removeEdge);
return removedEdges;
}
static Map<Vertex[], Integer> filterByRelativeReadCount (SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph, Integer threshold, boolean saveEdges) {
Map<Vertex[], Integer> removedEdges = new HashMap<>();
Boolean passes;
for (DefaultWeightedEdge e : graph.edgeSet()) {
Integer alphaReadCount = graph.getEdgeSource(e).getReadCount();
Integer betaReadCount = graph.getEdgeTarget(e).getReadCount();
passes = RelativeReadCountFilterFunction(threshold, alphaReadCount, betaReadCount);
if (!passes) {
if (saveEdges) {
Vertex source = graph.getEdgeSource(e);
Vertex target = graph.getEdgeTarget(e);
Integer intWeight = (int) graph.getEdgeWeight(e);
Vertex[] edge = {source, target};
removedEdges.put(edge, intWeight);
}
else {
graph.setEdgeWeight(e, 0.0);
}
}
}
if(saveEdges) {
for (Vertex[] edge : removedEdges.keySet()) {
graph.removeEdge(edge[0], edge[1]);
}
}
return removedEdges;
}
public static void addRemovedEdges(SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph,
List<Integer[]> removedEdges) {
for (Integer[] edge : removedEdges) {
DefaultWeightedEdge e = graph.addEdge(edge[0], edge[1]);
graph.setEdgeWeight(e, (double) edge[2]);
static Boolean RelativeReadCountFilterFunction(Integer threshold, Integer alphaReadCount, Integer betaReadCount) {
return Math.abs(alphaReadCount - betaReadCount) < threshold;
}
static void addRemovedEdges(SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph,
Map<DefaultWeightedEdge, Vertex[]> removedEdges) {
for (DefaultWeightedEdge edge : removedEdges.keySet()) {
Vertex[] vertices = removedEdges.get(edge);
graph.addEdge(vertices[0], vertices[1], edge);
}
}
}

View File

@@ -6,41 +6,57 @@ import java.util.Map;
//Can't just write the graph, because I need the occupancy data too.
//Makes most sense to serialize object and write that to a file.
//Which means there's no reason to split map data and graph data up.
//Custom vertex class means a lot of the map data can now be encoded in the graph itself
public class GraphWithMapData implements java.io.Serializable {
private String sourceFilename;
private String cellFilename;
private int cellSampleSize;
private String plateFilename;
private final SimpleWeightedGraph graph;
private Integer numWells;
private Integer[] wellConcentrations;
private Integer alphaCount;
private Integer betaCount;
private final Map<Integer, Integer> distCellsMapAlphaKey;
private final Map<Integer, Integer> plateVtoAMap;
private final Map<Integer, Integer> plateVtoBMap;
private final Map<Integer, Integer> plateAtoVMap;
private final Map<Integer, Integer> plateBtoVMap;
private final Map<Integer, Integer> alphaWellCounts;
private final Map<Integer, Integer> betaWellCounts;
private final int numWells;
private final Integer[] wellPopulations;
private final int alphaCount;
private final int betaCount;
private final double dropoutRate;
private final int readDepth;
private final double readErrorRate;
private final double errorCollisionRate;
private final double realSequenceCollisionRate;
private final Map<String, String> distCellsMapAlphaKey;
// private final Map<Integer, Integer> plateVtoAMap;
// private final Map<Integer, Integer> plateVtoBMap;
// private final Map<Integer, Integer> plateAtoVMap;
// private final Map<Integer, Integer> plateBtoVMap;
// private final Map<Integer, Integer> alphaWellCounts;
// private final Map<Integer, Integer> betaWellCounts;
private final Duration time;
public GraphWithMapData(SimpleWeightedGraph graph, Integer numWells, Integer[] wellConcentrations,
Integer alphaCount, Integer betaCount,
Map<Integer, Integer> distCellsMapAlphaKey, Map<Integer, Integer> plateVtoAMap,
Map<Integer,Integer> plateVtoBMap, Map<Integer, Integer> plateAtoVMap,
Map<Integer, Integer> plateBtoVMap, Map<Integer, Integer> alphaWellCounts,
Map<Integer, Integer> betaWellCounts, Duration time) {
Map<String, String> distCellsMapAlphaKey, Integer alphaCount, Integer betaCount,
Double dropoutRate, Integer readDepth, Double readErrorRate, Double errorCollisionRate,
Double realSequenceCollisionRate, Duration time){
// Map<Integer, Integer> plateVtoAMap,
// Map<Integer,Integer> plateVtoBMap, Map<Integer, Integer> plateAtoVMap,
// Map<Integer, Integer> plateBtoVMap, Map<Integer, Integer> alphaWellCounts,
// Map<Integer, Integer> betaWellCounts,) {
this.graph = graph;
this.numWells = numWells;
this.wellConcentrations = wellConcentrations;
this.wellPopulations = wellConcentrations;
this.alphaCount = alphaCount;
this.betaCount = betaCount;
this.distCellsMapAlphaKey = distCellsMapAlphaKey;
this.plateVtoAMap = plateVtoAMap;
this.plateVtoBMap = plateVtoBMap;
this.plateAtoVMap = plateAtoVMap;
this.plateBtoVMap = plateBtoVMap;
this.alphaWellCounts = alphaWellCounts;
this.betaWellCounts = betaWellCounts;
// this.plateVtoAMap = plateVtoAMap;
// this.plateVtoBMap = plateVtoBMap;
// this.plateAtoVMap = plateAtoVMap;
// this.plateBtoVMap = plateBtoVMap;
// this.alphaWellCounts = alphaWellCounts;
// this.betaWellCounts = betaWellCounts;
this.dropoutRate = dropoutRate;
this.readDepth = readDepth;
this.readErrorRate = readErrorRate;
this.errorCollisionRate = errorCollisionRate;
this.realSequenceCollisionRate = realSequenceCollisionRate;
this.time = time;
}
@@ -52,8 +68,8 @@ public class GraphWithMapData implements java.io.Serializable {
return numWells;
}
public Integer[] getWellConcentrations() {
return wellConcentrations;
public Integer[] getWellPopulations() {
return wellPopulations;
}
public Integer getAlphaCount() {
@@ -64,43 +80,65 @@ public class GraphWithMapData implements java.io.Serializable {
return betaCount;
}
public Map<Integer, Integer> getDistCellsMapAlphaKey() {
public Map<String, String> getDistCellsMapAlphaKey() {
return distCellsMapAlphaKey;
}
public Map<Integer, Integer> getPlateVtoAMap() {
return plateVtoAMap;
}
// public Map<Integer, Integer> getPlateVtoAMap() {
// return plateVtoAMap;
// }
//
// public Map<Integer, Integer> getPlateVtoBMap() {
// return plateVtoBMap;
// }
//
// public Map<Integer, Integer> getPlateAtoVMap() {
// return plateAtoVMap;
// }
//
// public Map<Integer, Integer> getPlateBtoVMap() {
// return plateBtoVMap;
// }
//
// public Map<Integer, Integer> getAlphaWellCounts() {
// return alphaWellCounts;
// }
//
// public Map<Integer, Integer> getBetaWellCounts() {
// return betaWellCounts;
// }
public Map<Integer, Integer> getPlateVtoBMap() {
return plateVtoBMap;
}
public Map<Integer, Integer> getPlateAtoVMap() {
return plateAtoVMap;
}
public Map<Integer, Integer> getPlateBtoVMap() {
return plateBtoVMap;
}
public Map<Integer, Integer> getAlphaWellCounts() {
return alphaWellCounts;
}
public Map<Integer, Integer> getBetaWellCounts() {
return betaWellCounts;
}
public Integer getReadDepth() { return readDepth; }
public Duration getTime() {
return time;
}
public void setSourceFilename(String filename) {
this.sourceFilename = filename;
public void setCellFilename(String filename) { this.cellFilename = filename; }
public String getCellFilename() { return this.cellFilename; }
public Integer getCellSampleSize() { return this.cellSampleSize; }
public void setCellSampleSize(int size) { this.cellSampleSize = size;}
public void setPlateFilename(String filename) {
this.plateFilename = filename;
}
public String getSourceFilename() {
return sourceFilename;
public String getPlateFilename() {
return plateFilename;
}
public Double getReadErrorRate() {
return readErrorRate;
}
public Double getErrorCollisionRate() {
return errorCollisionRate;
}
public Double getRealSequenceCollisionRate() { return realSequenceCollisionRate; }
public Double getDropoutRate() { return dropoutRate; }
}

View File

@@ -0,0 +1,4 @@
public enum HeapType {
FIBONACCI,
PAIRING
}

View File

@@ -1,14 +1,15 @@
import java.io.IOException;
import java.util.List;
import java.util.Scanner;
import java.util.InputMismatchException;
import java.util.*;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
//
public class InteractiveInterface {
final static Scanner sc = new Scanner(System.in);
static int input;
static boolean quit = false;
private static final Random rand = BiGpairSEQ.getRand();
private static final Scanner sc = new Scanner(System.in);
private static int input;
private static boolean quit = false;
public static void startInteractive() {
@@ -26,6 +27,7 @@ public class InteractiveInterface {
//Need to re-do the CDR3/CDR1 matching to correspond to new pattern
//System.out.println("5) Generate CDR3/CDR1 occupancy graph");
//System.out.println("6) Simulate CDR3/CDR1 T cell matching");
System.out.println("8) Options");
System.out.println("9) About/Acknowledgments");
System.out.println("0) Exit");
try {
@@ -36,9 +38,10 @@ public class InteractiveInterface {
case 3 -> makeCDR3Graph();
case 4 -> matchCDR3s();
//case 6 -> matchCellsCDR1();
case 8 -> mainOptions();
case 9 -> acknowledge();
case 0 -> quit = true;
default -> throw new InputMismatchException("Invalid input.");
default -> System.out.println("Invalid input.");
}
} catch (InputMismatchException | IOException ex) {
System.out.println(ex);
@@ -71,24 +74,27 @@ public class InteractiveInterface {
System.out.println(ex);
sc.next();
}
CellSample sample = Simulator.generateCellSample(numCells, cdr1Freq);
CellSample sample = new CellSample(numCells, cdr1Freq);
assert filename != null;
System.out.println("Writing cells to file");
CellFileWriter writer = new CellFileWriter(filename, sample);
writer.writeCellsToFile();
System.out.println("Cell sample written to: " + filename);
if(BiGpairSEQ.cacheCells()) {
BiGpairSEQ.setCellSampleInMemory(sample, filename);
}
}
//Output a CSV of sample plate
private static void makePlate() {
String cellFile = null;
String filename = null;
Double stdDev = 0.0;
Double parameter = 0.0;
Integer numWells = 0;
Integer numSections;
Integer[] concentrations = {1};
Integer[] populations = {1};
Double dropOutRate = 0.0;
boolean poisson = false;
boolean exponential = false;
double lambda = 1.5;
;
try {
System.out.println("\nSimulated sample plates consist of:");
System.out.println("* a number of wells");
@@ -106,32 +112,46 @@ public class InteractiveInterface {
System.out.println("1) Poisson");
System.out.println("2) Gaussian");
System.out.println("3) Exponential");
System.out.println("(Note: approximate distribution in original paper is exponential, lambda = 0.6)");
System.out.println("(lambda value approximated from slope of log-log graph in figure 4c)");
System.out.println("4) Zipf");
System.out.println("(Note: wider distributions are more memory intensive to match)");
System.out.print("Enter selection value: ");
input = sc.nextInt();
switch (input) {
case 1 -> poisson = true;
case 1 -> {
BiGpairSEQ.setDistributionType(DistributionType.POISSON);
}
case 2 -> {
BiGpairSEQ.setDistributionType(DistributionType.GAUSSIAN);
System.out.println("How many distinct T-cells within one standard deviation of peak frequency?");
System.out.println("(Note: wider distributions are more memory intensive to match)");
stdDev = sc.nextDouble();
if (stdDev <= 0.0) {
parameter = sc.nextDouble();
if (parameter <= 0.0) {
throw new InputMismatchException("Value must be positive.");
}
}
case 3 -> {
exponential = true;
System.out.println("Please enter lambda value for exponential distribution.");
lambda = sc.nextDouble();
if (lambda <= 0.0) {
throw new InputMismatchException("Value must be positive.");
BiGpairSEQ.setDistributionType(DistributionType.EXPONENTIAL);
System.out.print("Please enter lambda value for exponential distribution: ");
parameter = sc.nextDouble();
if (parameter <= 0.0) {
parameter = 1.4;
System.out.println("Value must be positive. Defaulting to 1.4.");
}
}
case 4 -> {
BiGpairSEQ.setDistributionType(DistributionType.ZIPF);
System.out.print("Please enter exponent value for Zipf distribution: ");
parameter = sc.nextDouble();
if (parameter <= 0.0) {
parameter = 1.4;
System.out.println("Value must be positive. Defaulting to 1.4.");
}
}
default -> {
System.out.println("Invalid input. Defaulting to exponential.");
exponential = true;
parameter = 1.4;
BiGpairSEQ.setDistributionType(DistributionType.EXPONENTIAL);
}
}
System.out.print("\nNumber of wells on plate: ");
@@ -139,22 +159,57 @@ public class InteractiveInterface {
if(numWells < 1){
throw new InputMismatchException("No wells on plate");
}
System.out.println("\nThe plate can be evenly sectioned to allow multiple concentrations of T-cells/well");
System.out.println("How many sections would you like to make (minimum 1)?");
numSections = sc.nextInt();
if(numSections < 1) {
throw new InputMismatchException("Too few sections.");
//choose whether to make T cell population/well random
boolean randomWellPopulations;
System.out.println("Randomize number of T cells in each well? (y/n)");
String ans = sc.next();
Pattern pattern = Pattern.compile("(?:yes|y)", Pattern.CASE_INSENSITIVE);
Matcher matcher = pattern.matcher(ans);
if(matcher.matches()){
randomWellPopulations = true;
}
else if (numSections > numWells) {
throw new InputMismatchException("Cannot have more sections than wells.");
else{
randomWellPopulations = false;
}
int i = 1;
concentrations = new Integer[numSections];
while(numSections > 0) {
System.out.print("Enter number of T-cells per well in section " + i +": ");
concentrations[i - 1] = sc.nextInt();
i++;
numSections--;
if(randomWellPopulations) { //if T cell population/well is random
numSections = numWells;
Integer minPop;
Integer maxPop;
System.out.print("Please enter minimum number of T cells in a well: ");
minPop = sc.nextInt();
if(minPop < 1) {
throw new InputMismatchException("Minimum well population must be positive");
}
System.out.println("Please enter maximum number of T cells in a well: ");
maxPop = sc.nextInt();
if(maxPop < minPop) {
throw new InputMismatchException("Max well population must be greater than min well population");
}
//maximum should be inclusive, so need to add one to max of randomly generated values
populations = rand.ints(minPop, maxPop + 1)
.limit(numSections)
.boxed()
.toArray(Integer[]::new);
System.out.print("Populations: ");
System.out.println(Arrays.toString(populations));
}
else{ //if T cell population/well is not random
System.out.println("\nThe plate can be evenly sectioned to allow different numbers of T cells per well.");
System.out.println("How many sections would you like to make (minimum 1)?");
numSections = sc.nextInt();
if (numSections < 1) {
throw new InputMismatchException("Too few sections.");
} else if (numSections > numWells) {
throw new InputMismatchException("Cannot have more sections than wells.");
}
int i = 1;
populations = new Integer[numSections];
while (numSections > 0) {
System.out.print("Enter number of T cells per well in section " + i + ": ");
populations[i - 1] = sc.nextInt();
i++;
numSections--;
}
}
System.out.println("\nErrors in amplification can induce a well dropout rate for sequences");
System.out.print("Enter well dropout rate (0.0 to 1.0): ");
@@ -166,26 +221,39 @@ public class InteractiveInterface {
System.out.println(ex);
sc.next();
}
System.out.println("Reading Cell Sample file: " + cellFile);
assert cellFile != null;
CellFileReader cellReader = new CellFileReader(cellFile);
if(exponential){
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
samplePlate.fillWellsExponential(cellReader.getFilename(), cellReader.getCells(), lambda);
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
writer.writePlateFile();
CellSample cells;
if (cellFile.equals(BiGpairSEQ.getCellFilename())){
cells = BiGpairSEQ.getCellSampleInMemory();
}
else {
if (poisson) {
stdDev = Math.sqrt(cellReader.getCellCount()); //gaussian with square root of elements approximates poisson
System.out.println("Reading Cell Sample file: " + cellFile);
CellFileReader cellReader = new CellFileReader(cellFile);
cells = cellReader.getCellSample();
if(BiGpairSEQ.cacheCells()) {
BiGpairSEQ.setCellSampleInMemory(cells, cellFile);
}
Plate samplePlate = new Plate(numWells, dropOutRate, concentrations);
samplePlate.fillWells(cellReader.getFilename(), cellReader.getCells(), stdDev);
assert filename != null;
PlateFileWriter writer = new PlateFileWriter(filename, samplePlate);
System.out.println("Writing Sample Plate to file");
writer.writePlateFile();
System.out.println("Sample Plate written to file: " + filename);
}
assert filename != null;
Plate samplePlate;
PlateFileWriter writer;
DistributionType type = BiGpairSEQ.getDistributionType();
switch(type) {
case POISSON -> {
parameter = Math.sqrt(cells.getCellCount()); //gaussian with square root of elements approximates poisson
samplePlate = new Plate(cells, cellFile, numWells, populations, dropOutRate, parameter);
writer = new PlateFileWriter(filename, samplePlate);
}
default -> {
samplePlate = new Plate(cells, cellFile, numWells, populations, dropOutRate, parameter);
writer = new PlateFileWriter(filename, samplePlate);
}
}
System.out.println("Writing Sample Plate to file");
writer.writePlateFile();
System.out.println("Sample Plate written to file: " + filename);
if(BiGpairSEQ.cachePlate()) {
BiGpairSEQ.setPlateInMemory(samplePlate, filename);
}
}
@@ -194,7 +262,12 @@ public class InteractiveInterface {
String filename = null;
String cellFile = null;
String plateFile = null;
Boolean simulateReadDepth = false;
//number of times to read each sequence in a well
int readDepth = 1;
double readErrorRate = 0.0;
double errorCollisionRate = 0.0;
double realSequenceCollisionRate = 0.0;
try {
String str = "\nGenerating bipartite weighted graph encoding occupancy overlap data ";
str = str.concat("\nrequires a cell sample file and a sample plate file.");
@@ -203,21 +276,76 @@ public class InteractiveInterface {
cellFile = sc.next();
System.out.print("\nPlease enter name of an existing sample plate file: ");
plateFile = sc.next();
System.out.println("\nThe graph and occupancy data will be written to a serialized binary file.");
System.out.println("\nEnable simulation of sequence read depth and sequence read errors? (y/n)");
String ans = sc.next();
Pattern pattern = Pattern.compile("(?:yes|y)", Pattern.CASE_INSENSITIVE);
Matcher matcher = pattern.matcher(ans);
if(matcher.matches()){
simulateReadDepth = true;
}
if (simulateReadDepth) {
System.out.print("\nPlease enter the read depth (the integer number of times a sequence is read): ");
readDepth = sc.nextInt();
if(readDepth < 1) {
throw new InputMismatchException("The read depth must be an integer >= 1");
}
System.out.println("\nPlease enter the read error probability (0.0 to 1.0)");
System.out.print("(The probability that a sequence will be misread): ");
readErrorRate = sc.nextDouble();
if(readErrorRate < 0.0 || readErrorRate > 1.0) {
throw new InputMismatchException("The read error probability must be in the range [0.0, 1.0]");
}
System.out.println("\nPlease enter the error collision probability (0.0 to 1.0)");
System.out.print("(The probability of a sequence being misread in a way it has been misread before): ");
errorCollisionRate = sc.nextDouble();
if(errorCollisionRate < 0.0 || errorCollisionRate > 1.0) {
throw new InputMismatchException("The error collision probability must be an in the range [0.0, 1.0]");
}
System.out.println("\nPlease enter the real sequence collision probability (0.0 to 1.0)");
System.out.print("(The probability that a (non-collision) misread produces a different, real sequence): ");
realSequenceCollisionRate = sc.nextDouble();
if(realSequenceCollisionRate < 0.0 || realSequenceCollisionRate > 1.0) {
throw new InputMismatchException("The real sequence collision probability must be an in the range [0.0, 1.0]");
}
}
System.out.println("\nThe graph and occupancy data will be written to a file.");
System.out.print("Please enter a name for the output file: ");
filename = sc.next();
} catch (InputMismatchException ex) {
System.out.println(ex);
sc.next();
}
System.out.println("Reading Cell Sample file: " + cellFile);
assert cellFile != null;
CellFileReader cellReader = new CellFileReader(cellFile);
System.out.println("Reading Sample Plate file: " + plateFile);
CellSample cellSample;
//check if cells are already in memory
if(cellFile.equals(BiGpairSEQ.getCellFilename()) && BiGpairSEQ.getCellSampleInMemory() != null) {
cellSample = BiGpairSEQ.getCellSampleInMemory();
}
else {
System.out.println("Reading Cell Sample file: " + cellFile);
CellFileReader cellReader = new CellFileReader(cellFile);
cellSample = cellReader.getCellSample();
if(BiGpairSEQ.cacheCells()) {
BiGpairSEQ.setCellSampleInMemory(cellSample, cellFile);
}
}
assert plateFile != null;
PlateFileReader plateReader = new PlateFileReader(plateFile);
Plate plate = new Plate(plateReader.getFilename(), plateReader.getWells());
if (cellReader.getCells().size() == 0){
Plate plate;
//check if plate is already in memory
if(plateFile.equals(BiGpairSEQ.getPlateFilename())){
plate = BiGpairSEQ.getPlateInMemory();
}
else {
System.out.println("Reading Sample Plate file: " + plateFile);
PlateFileReader plateReader = new PlateFileReader(plateFile);
plate = plateReader.getSamplePlate();
if(BiGpairSEQ.cachePlate()) {
BiGpairSEQ.setPlateInMemory(plate, plateFile);
}
}
if (cellSample.getCells().size() == 0){
System.out.println("No cell sample found.");
System.out.println("Returning to main menu.");
}
@@ -226,15 +354,23 @@ public class InteractiveInterface {
System.out.println("Returning to main menu.");
}
else{
List<Integer[]> cells = cellReader.getCells();
GraphWithMapData data = Simulator.makeGraph(cells, plate, true);
GraphWithMapData data = Simulator.makeCDR3Graph(cellSample, plate, readDepth, readErrorRate,
errorCollisionRate, realSequenceCollisionRate, true);
assert filename != null;
GraphDataObjectWriter dataWriter = new GraphDataObjectWriter(filename, data);
dataWriter.writeDataToFile();
System.out.println("Graph and Data file written to: " + filename);
BiGpairSEQ.setGraph(data);
BiGpairSEQ.setGraphFilename(filename);
System.out.println("Graph and Data file " + filename + " cached.");
if(BiGpairSEQ.outputBinary()) {
GraphDataObjectWriter dataWriter = new GraphDataObjectWriter(filename, data);
dataWriter.writeDataToFile();
System.out.println("Serialized binary graph/data file written to: " + filename);
}
if(BiGpairSEQ.outputGraphML()) {
GraphMLFileWriter graphMLWriter = new GraphMLFileWriter(filename, data);
graphMLWriter.writeGraphToFile();
System.out.println("GraphML file written to: " + filename);
}
if(BiGpairSEQ.cacheGraph()) {
BiGpairSEQ.setGraphInMemory(data, filename);
}
}
}
@@ -256,17 +392,28 @@ public class InteractiveInterface {
System.out.println("\nWhat is the minimum number of CDR3 alpha/beta overlap wells to attempt matching?");
lowThreshold = sc.nextInt();
if(lowThreshold < 1){
throw new InputMismatchException("Minimum value for low threshold set to 1");
lowThreshold = 1;
System.out.println("Value for low occupancy overlap threshold must be positive");
System.out.println("Value for low occupancy overlap threshold set to 1");
}
System.out.println("\nWhat is the maximum number of CDR3 alpha/beta overlap wells to attempt matching?");
highThreshold = sc.nextInt();
System.out.println("\nWhat is the maximum difference in alpha/beta occupancy to attempt matching?");
maxOccupancyDiff = sc.nextInt();
System.out.println("\nWell overlap percentage = pair overlap / sequence occupancy");
System.out.println("What is the minimum well overlap percentage to attempt matching? (0 to 100)");
if(highThreshold < lowThreshold) {
highThreshold = lowThreshold;
System.out.println("Value for high occupancy overlap threshold must be >= low overlap threshold");
System.out.println("Value for high occupancy overlap threshold set to " + lowThreshold);
}
System.out.println("What is the minimum percentage of a sequence's wells in alpha/beta overlap to attempt matching? (0 - 100)");
minOverlapPercent = sc.nextInt();
if (minOverlapPercent < 0 || minOverlapPercent > 100) {
throw new InputMismatchException("Value outside range. Minimum percent set to 0");
System.out.println("Value outside range. Minimum occupancy overlap percentage set to 0");
}
System.out.println("\nWhat is the maximum difference in alpha/beta occupancy to attempt matching?");
maxOccupancyDiff = sc.nextInt();
if (maxOccupancyDiff < 0) {
maxOccupancyDiff = 0;
System.out.println("Maximum allowable difference in alpha/beta occupancy must be nonnegative");
System.out.println("Maximum allowable difference in alpha/beta occupancy set to 0");
}
} catch (InputMismatchException ex) {
System.out.println(ex);
@@ -275,21 +422,19 @@ public class InteractiveInterface {
assert graphFilename != null;
//check if this is the same graph we already have in memory.
GraphWithMapData data;
if(!(graphFilename.equals(BiGpairSEQ.getGraphFilename())) || BiGpairSEQ.getGraph() == null) {
BiGpairSEQ.clearGraph();
//read object data from file
GraphDataObjectReader dataReader = new GraphDataObjectReader(graphFilename);
data = dataReader.getData();
//set new graph in memory and new filename
BiGpairSEQ.setGraph(data);
BiGpairSEQ.setGraphFilename(graphFilename);
if(graphFilename.equals(BiGpairSEQ.getGraphFilename())) {
data = BiGpairSEQ.getGraphInMemory();
}
else {
data = BiGpairSEQ.getGraph();
GraphDataObjectReader dataReader = new GraphDataObjectReader(graphFilename, true);
data = dataReader.getData();
if(BiGpairSEQ.cacheGraph()) {
BiGpairSEQ.setGraphInMemory(data, graphFilename);
}
}
//simulate matching
MatchingResult results = Simulator.matchCDR3s(data, graphFilename, lowThreshold, highThreshold, maxOccupancyDiff,
minOverlapPercent, true);
minOverlapPercent, true, BiGpairSEQ.calculatePValue());
//write results to file
assert filename != null;
MatchingFileWriter writer = new MatchingFileWriter(filename, results);
@@ -402,7 +547,97 @@ public class InteractiveInterface {
// }
// }
private static void mainOptions(){
boolean backToMain = false;
while(!backToMain) {
System.out.println("\n--------------OPTIONS---------------");
System.out.println("1) Turn " + getOnOff(!BiGpairSEQ.cacheCells()) + " cell sample file caching");
System.out.println("2) Turn " + getOnOff(!BiGpairSEQ.cachePlate()) + " plate file caching");
System.out.println("3) Turn " + getOnOff(!BiGpairSEQ.cacheGraph()) + " graph/data file caching");
System.out.println("4) Turn " + getOnOff(!BiGpairSEQ.outputBinary()) + " serialized binary graph output");
System.out.println("5) Turn " + getOnOff(!BiGpairSEQ.outputGraphML()) + " GraphML graph output (for data portability to other programs)");
System.out.println("6) Turn " + getOnOff(!BiGpairSEQ.calculatePValue()) + " calculation of p-values");
System.out.println("7) Maximum weight matching algorithm options");
System.out.println("0) Return to main menu");
try {
input = sc.nextInt();
switch (input) {
case 1 -> BiGpairSEQ.setCacheCells(!BiGpairSEQ.cacheCells());
case 2 -> BiGpairSEQ.setCachePlate(!BiGpairSEQ.cachePlate());
case 3 -> BiGpairSEQ.setCacheGraph(!BiGpairSEQ.cacheGraph());
case 4 -> BiGpairSEQ.setOutputBinary(!BiGpairSEQ.outputBinary());
case 5 -> BiGpairSEQ.setOutputGraphML(!BiGpairSEQ.outputGraphML());
case 6 -> BiGpairSEQ.setCalculatePValue(!BiGpairSEQ.calculatePValue());
case 7 -> algorithmOptions();
case 0 -> backToMain = true;
default -> System.out.println("Invalid input");
}
} catch (InputMismatchException ex) {
System.out.println(ex);
sc.next();
}
}
}
/**
* Helper function for printing menu items in mainOptions(). Returns a string based on the value of parameter.
*
* @param b - a boolean value
* @return String "on" if b is true, "off" if b is false
*/
private static String getOnOff(boolean b) {
if (b) { return "on";}
else { return "off"; }
}
private static void algorithmOptions(){
boolean backToOptions = false;
while(!backToOptions) {
System.out.println("\n---------ALGORITHM OPTIONS----------");
System.out.println("1) Use Hungarian algorithm with Fibonacci heap priority queue");
System.out.println("2) Use Hungarian algorithm with pairing heap priority queue");
System.out.println("3) Use auction algorithm");
System.out.println("4) Use integer weight scaling algorithm by Duan and Su. (buggy, not yet fully implemented!)");
System.out.println("0) Return to Options menu");
try {
input = sc.nextInt();
switch (input) {
case 1 -> {
BiGpairSEQ.setHungarianAlgorithm();
BiGpairSEQ.setFibonacciHeap();
System.out.println("MWM algorithm set to Hungarian with Fibonacci heap");
backToOptions = true;
}
case 2 -> {
BiGpairSEQ.setHungarianAlgorithm();
BiGpairSEQ.setPairingHeap();
System.out.println("MWM algorithm set to Hungarian with pairing heap");
backToOptions = true;
}
case 3 -> {
BiGpairSEQ.setAuctionAlgorithm();
System.out.println("MWM algorithm set to auction");
backToOptions = true;
}
case 4 -> {
System.out.println("Scaling integer weight MWM algorithm not yet fully implemented. Sorry.");
// BiGpairSEQ.setIntegerWeightScalingAlgorithm();
// System.out.println("MWM algorithm set to integer weight scaling algorithm of Duan and Su");
// backToOptions = true;
}
case 0 -> backToOptions = true;
default -> System.out.println("Invalid input");
}
} catch (InputMismatchException ex) {
System.out.println(ex);
sc.next();
}
}
}
private static void acknowledge(){
System.out.println("BiGpairSEQ_Sim " + BiGpairSEQ.getVersion());
System.out.println();
System.out.println("This program simulates BiGpairSEQ, a graph theory based adaptation");
System.out.println("of the pairSEQ algorithm for pairing T cell receptor sequences.");
System.out.println();

View File

@@ -9,27 +9,34 @@ public class MatchingResult {
private final List<String> comments;
private final List<String> headers;
private final List<List<String>> allResults;
private final Map<Integer, Integer> matchMap;
private final Duration time;
private final Map<String, String> matchMap;
public MatchingResult(Map<String, String> metadata, List<String> headers,
List<List<String>> allResults, Map<Integer, Integer>matchMap, Duration time){
List<List<String>> allResults, Map<String, String>matchMap){
/*
* POSSIBLE KEYS FOR METADATA MAP ARE:
* sample plate filename *
* graph filename *
* matching weight *
* well populations *
* total alphas found *
* total betas found *
* high overlap threshold
* low overlap threshold
* maximum occupancy difference
* minimum overlap percent
* pairing attempt rate
* correct pairing count
* incorrect pairing count
* pairing error rate
* simulation time
* sequence read depth *
* sequence read error rate *
* read error collision rate *
* total alphas read from plate *
* total betas read from plate *
* alphas in graph (after pre-filtering) *
* betas in graph (after pre-filtering) *
* high overlap threshold for pairing *
* low overlap threshold for pairing *
* maximum occupancy difference for pairing *
* minimum overlap percent for pairing *
* pairing attempt rate *
* correct pairing count *
* incorrect pairing count *
* pairing error rate *
* time to generate graph (seconds) *
* time to pair sequences (seconds) *
* total simulation time (seconds) *
*/
this.metadata = metadata;
this.comments = new ArrayList<>();
@@ -39,8 +46,6 @@ public class MatchingResult {
this.headers = headers;
this.allResults = allResults;
this.matchMap = matchMap;
this.time = time;
}
public Map<String, String> getMetadata() {return metadata;}
@@ -57,13 +62,13 @@ public class MatchingResult {
return headers;
}
public Map<Integer, Integer> getMatchMap() {
public Map<String, String> getMatchMap() {
return matchMap;
}
public Duration getTime() {
return time;
}
// public Duration getTime() {
// return time;
// }
public String getPlateFilename() {
return metadata.get("sample plate filename");
@@ -84,13 +89,29 @@ public class MatchingResult {
}
public Integer getAlphaCount() {
return Integer.parseInt(metadata.get("total alpha count"));
return Integer.parseInt(metadata.get("total alphas read from plate"));
}
public Integer getBetaCount() {
return Integer.parseInt(metadata.get("total beta count"));
return Integer.parseInt(metadata.get("total betas read from plate"));
}
//put in the rest of these methods following the same pattern
public Integer getHighOverlapThreshold() { return Integer.parseInt(metadata.get("high overlap threshold for pairing"));}
public Integer getLowOverlapThreshold() { return Integer.parseInt(metadata.get("low overlap threshold for pairing"));}
public Integer getMaxOccupancyDifference() { return Integer.parseInt(metadata.get("maximum occupancy difference for pairing"));}
public Integer getMinOverlapPercent() { return Integer.parseInt(metadata.get("minimum overlap percent for pairing"));}
public Double getPairingAttemptRate() { return Double.parseDouble(metadata.get("pairing attempt rate"));}
public Integer getCorrectPairingCount() { return Integer.parseInt(metadata.get("correct pairing count"));}
public Integer getIncorrectPairingCount() { return Integer.parseInt(metadata.get("incorrect pairing count"));}
public Double getPairingErrorRate() { return Double.parseDouble(metadata.get("pairing error rate"));}
public String getSimulationTime() { return metadata.get("total simulation time (seconds)"); }
}

View File

@@ -0,0 +1,177 @@
import org.jgrapht.Graph;
import org.jgrapht.GraphTests;
import org.jgrapht.alg.interfaces.MatchingAlgorithm;
import java.math.BigDecimal;
import java.util.*;
/**
* Maximum weight matching in bipartite graphs with strictly integer edge weights, using a forward auction algorithm.
* This implementation uses the Gauss-Seidel version of the forward auction algorithm, in which bids are submitted
* one at a time. For any weighted bipartite graph with n vertices in the smaller partition, this algorithm will produce
* a matching that is within n*epsilon of being optimal. Using an epsilon = 1/(n+1) ensures that this matching differs
* from an optimal matching by <1. Thus, for a bipartite graph with strictly integer weights, this algorithm returns
* a maximum weight matching.
*
* See:
* "Towards auction algorithms for large dense assignment problems"
* Libor Buš and Pavel Tvrdík, Comput Optim Appl (2009) 43:411-436
* https://link.springer.com/article/10.1007/s10589-007-9146-5
*
* See also:
* Many books and papers by Dimitri Bertsekas, including chapter 4 of Linear Network Optimization:
* https://web.mit.edu/dimitrib/www/LNets_Full_Book.pdf
*
* @param <V> the graph vertex type
* @param <E> the graph edge type
*
* @author Eugene Fischer
*/
public class MaximumIntegerWeightBipartiteAuctionMatching<V, E> implements MatchingAlgorithm<V, E> {
private final Graph<V, E> graph;
private final Set<V> partition1;
private final Set<V> partition2;
private final BigDecimal epsilon;
private final Set<E> matching;
private BigDecimal matchingWeight;
private boolean swappedPartitions = false;
public MaximumIntegerWeightBipartiteAuctionMatching(Graph<V, E> graph, Set<V> partition1, Set<V> partition2) {
this.graph = GraphTests.requireUndirected(graph);
this.partition1 = Objects.requireNonNull(partition1, "Partition 1 cannot be null");
this.partition2 = Objects.requireNonNull(partition2, "Partition 2 cannot be null");
int n = Math.max(partition1.size(), partition2.size());
this.epsilon = BigDecimal.valueOf(1 / ((double) n + 1)); //The minimum price increase of a bid
this.matching = new LinkedHashSet<>();
this.matchingWeight = BigDecimal.ZERO;
}
/*
Method coded using MaximumWeightBipartiteMatching.class from JgraphT as a model
*/
@Override
public Matching<V, E> getMatching() {
/*
* Test input instance
*/
if (!GraphTests.isSimple(graph)) {
throw new IllegalArgumentException("Only simple graphs supported");
}
if (!GraphTests.isBipartitePartition(graph, partition1, partition2)) {
throw new IllegalArgumentException("Graph partition is not bipartite");
}
/*
If the two partitions are different sizes, the bidders must be the smaller of the two partitions.
*/
Set<V> items;
Set<V> bidders;
if (partition2.size() >= partition1.size()) {
bidders = partition1;
items = partition2;
}
else {
bidders = partition2;
items = partition1;
swappedPartitions = true;
}
/*
Create a map to track the owner of each item, which is initially null,
and a map to track the price of each item, which is initially 0. An
Initial price of 0 allows for asymmetric assignment (though does mean
that this form of the algorithm cannot take advantage of epsilon-scaling).
*/
Map<V, V> owners = new HashMap<>();
Map<V, BigDecimal> prices = new HashMap<>();
for(V item: items) {
owners.put(item, null);
prices.put(item, BigDecimal.ZERO);
}
//Create a queue of bidders that don't currently own an item, which is initially all of them
Queue<V> unmatchedBidders = new ArrayDeque<>();
for(V bidder: bidders) {
unmatchedBidders.offer(bidder);
}
//Run the auction while there are remaining unmatched bidders
while (unmatchedBidders.size() > 0) {
V bidder = unmatchedBidders.poll();
V item = null;
BigDecimal bestValue = BigDecimal.valueOf(-1.0);
BigDecimal runnerUpValue = BigDecimal.valueOf(-1.0);
/*
Find the items that offer the best and second-best value for the bidder,
then submit a bid equal to the price of the best-valued item plus the marginal value over
the second-best-valued item plus epsilon.
*/
for (E edge: graph.edgesOf(bidder)) {
double weight = graph.getEdgeWeight(edge);
if(weight == 0.0) {
continue;
}
V tmp = getItem(edge);
BigDecimal value = BigDecimal.valueOf(weight).subtract(prices.get(tmp));
if (value.compareTo(bestValue) >= 0) {
runnerUpValue = bestValue;
bestValue = value;
item = tmp;
}
else if (value.compareTo(runnerUpValue) >= 0) {
runnerUpValue = value;
}
}
if(bestValue.compareTo(BigDecimal.ZERO) >= 0) {
V formerOwner = owners.get(item);
BigDecimal price = prices.get(item);
BigDecimal bid = price.add(bestValue).subtract(runnerUpValue).add(epsilon);
if (formerOwner != null) {
unmatchedBidders.offer(formerOwner);
}
owners.put(item, bidder);
prices.put(item, bid);
}
}
//Add all edges between items and their owners to the matching
for (V item: owners.keySet()) {
if (owners.get(item) != null) {
matching.add(graph.getEdge(item, owners.get(item)));
}
}
//Sum the edges of the matching to obtain the matching weight
for(E edge: matching) {
this.matchingWeight = this.matchingWeight.add(BigDecimal.valueOf(graph.getEdgeWeight(edge)));
}
return new MatchingImpl<>(graph, matching, matchingWeight.doubleValue());
}
private V getItem(E edge) {
if (swappedPartitions) {
return graph.getEdgeSource(edge);
}
else {
return graph.getEdgeTarget(edge);
}
}
// //method for implementing a forward-reverse auction algorithm, not used here
// private V getBidder(E edge) {
// if (swappedPartitions) {
// return graph.getEdgeTarget(edge);
// }
// else {
// return graph.getEdgeSource(edge);
// }
// }
public BigDecimal getMatchingWeight() {
return matchingWeight;
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,212 @@
import org.jgrapht.Graph;
import org.jgrapht.GraphTests;
import org.jgrapht.alg.interfaces.MatchingAlgorithm;
import org.jgrapht.alg.util.Pair;
import java.math.BigDecimal;
import java.util.*;
/*
Maximum weight matching in bipartite graphs with strictly integer edge weights, found using the
unscaled look-back auction algorithm
*/
public class MaximumWeightBipartiteLookBackAuctionMatching<V, E> implements MatchingAlgorithm<V, E> {
private final Graph<V, E> graph;
private final Set<V> partition1;
private final Set<V> partition2;
private final BigDecimal delta;
private final Set<E> matching;
private BigDecimal matchingWeight;
private boolean swappedPartitions = false;
public MaximumWeightBipartiteLookBackAuctionMatching(Graph<V, E> graph, Set<V> partition1, Set<V> partition2) {
this.graph = GraphTests.requireUndirected(graph);
this.partition1 = Objects.requireNonNull(partition1, "Partition 1 cannot be null");
this.partition2 = Objects.requireNonNull(partition2, "Partition 2 cannot be null");
int n = Math.max(partition1.size(), partition2.size());
this.delta = BigDecimal.valueOf(1 / ((double) n + 1));
this.matching = new LinkedHashSet<>();
this.matchingWeight = BigDecimal.ZERO;
}
/*
Method coded using MaximumWeightBipartiteMatching.class from JgraphT as a model
*/
@Override
public Matching<V, E> getMatching() {
/*
* Test input instance
*/
if (!GraphTests.isSimple(graph)) {
throw new IllegalArgumentException("Only simple graphs supported");
}
if (!GraphTests.isBipartitePartition(graph, partition1, partition2)) {
throw new IllegalArgumentException("Graph partition is not bipartite");
}
/*
If the two partitions are different sizes, the bidders must be the smaller of the two partitions.
*/
Set<V> items;
Set<V> bidders;
if (partition2.size() >= partition1.size()) {
bidders = partition1;
items = partition2;
}
else {
bidders = partition2;
items = partition1;
swappedPartitions = true;
}
/*
Create a map to track the owner of each item, which is initially null,
and a map to track the price of each item, which is initially 0.
*/
Map<V, V> owners = new HashMap<>();
/*
Create a map to track the prices of the objects
*/
Map<V, BigDecimal> prices = new HashMap<>();
for(V item: items) {
owners.put(item, null);
prices.put(item, BigDecimal.ZERO);
}
/*
Create a map to track the most valuable object for a bidder
*/
Map<V, V> mostValuableItems = new HashMap<>();
/*
Create a map to track the second most valuable object for a bidder
*/
Map<V, V> runnerUpItems = new HashMap<>();
/*
Create a map to track the bidder value thresholds
*/
Map<V, BigDecimal> valueThresholds = new HashMap<>();
//Initialize queue of all bidders that don't currently own an item
Queue<V> unmatchedBidders = new ArrayDeque<>();
for(V bidder: bidders) {
unmatchedBidders.offer(bidder);
valueThresholds.put(bidder, BigDecimal.ZERO);
mostValuableItems.put(bidder, null);
runnerUpItems.put(bidder, null);
}
while (unmatchedBidders.size() > 0) {
V bidder = unmatchedBidders.poll();
// BigDecimal valueThreshold = valueThresholds.get(bidder);
BigDecimal bestValue = BigDecimal.ZERO;
BigDecimal runnerUpValue = BigDecimal.ZERO;
boolean reinitialize = true;
// if (mostValuableItems.get(bidder) != null && runnerUpItems.get(bidder) != null) {
// reinitialize = false;
// //get the weight of the edge between the bidder and the best valued item
// V bestItem = mostValuableItems.get(bidder);
// BigDecimal bestItemWeight = BigDecimal.valueOf(graph.getEdgeWeight(graph.getEdge(bidder, bestItem)));
// bestValue = bestItemWeight.subtract(prices.get(bestItem));
// V runnerUpItem = runnerUpItems.get(bidder);
// BigDecimal runnerUpWeight = BigDecimal.valueOf(graph.getEdgeWeight(graph.getEdge(bidder, runnerUpItem)));
// runnerUpValue = runnerUpWeight.subtract(prices.get(runnerUpItem));
// //if both values are still above the threshold
// if (bestValue.compareTo(valueThreshold) >= 0 && runnerUpValue.compareTo(valueThreshold) >= 0) {
// if (bestValue.compareTo(runnerUpValue) < 0) { //if best value is lower than runner up
// BigDecimal tmp = bestValue;
// bestValue = runnerUpValue;
// runnerUpValue = tmp;
// mostValuableItems.put(bidder, runnerUpItem);
// runnerUpItems.put(bidder, bestItem);
// }
// BigDecimal newValueThreshold = bestValue.min(runnerUpValue);
// valueThresholds.put(bidder, newValueThreshold);
// System.out.println("lookback successful");
// }
// else {
// reinitialize = true; //lookback failed
// }
// }
if (reinitialize){
bestValue = BigDecimal.ZERO;
runnerUpValue = BigDecimal.ZERO;
for (E edge: graph.edgesOf(bidder)) {
double weight = graph.getEdgeWeight(edge);
if (weight == 0.0) {
continue;
}
V tmpItem = getItem(bidder, edge);
BigDecimal tmpValue = BigDecimal.valueOf(weight).subtract(prices.get(tmpItem));
if (tmpValue.compareTo(bestValue) >= 0) {
runnerUpValue = bestValue;
bestValue = tmpValue;
runnerUpItems.put(bidder, mostValuableItems.get(bidder));
mostValuableItems.put(bidder, tmpItem);
}
else if (tmpValue.compareTo(runnerUpValue) >= 0) {
runnerUpValue = tmpValue;
runnerUpItems.put(bidder, tmpItem);
}
}
valueThresholds.put(bidder, runnerUpValue);
}
//Should now have initialized the maps to make look back possible
//skip this bidder if the best value is still zero
if (BigDecimal.ZERO.equals(bestValue)) {
continue;
}
V mostValuableItem = mostValuableItems.get(bidder);
BigDecimal price = prices.get(mostValuableItem);
BigDecimal bid = price.add(bestValue).subtract(runnerUpValue).add(this.delta);
V formerOwner = owners.get(mostValuableItem);
if (formerOwner != null) {
unmatchedBidders.offer(formerOwner);
}
owners.put(mostValuableItem, bidder);
prices.put(mostValuableItem, bid);
}
for (V item: owners.keySet()) {
if (owners.get(item) != null) {
matching.add(graph.getEdge(item, owners.get(item)));
}
}
for(E edge: matching) {
this.matchingWeight = this.matchingWeight.add(BigDecimal.valueOf(graph.getEdgeWeight(edge)));
}
return new MatchingImpl<>(graph, matching, matchingWeight.doubleValue());
}
private V getItem(V bidder, E edge) {
if (swappedPartitions) {
return graph.getEdgeSource(edge);
}
else {
return graph.getEdgeTarget(edge);
}
}
private V getBidder(V item, E edge) {
if (swappedPartitions) {
return graph.getEdgeTarget(edge);
}
else {
return graph.getEdgeSource(edge);
}
}
public BigDecimal getMatchingWeight() {
return matchingWeight;
}
}

View File

@@ -2,21 +2,51 @@
/*
TODO: Implement exponential distribution using inversion method - DONE
TODO: Implement collisions with real sequences by having the counting function keep a map of all sequences it's read,
with values of all misreads. Can then have a spurious/real collision rate, which will have count randomly select a sequence
it's already read at least once, and put that into the list of spurious sequences for the given real sequence. Will let me get rid
of the distinctMisreadCount map, and use this new map instead. Doing it this way, once a sequence has been misread as another
sequence once, it is more likely to be misread that way again, as future read error collisions can also be real sequence collisions
Prob A: a read error occurs. Prob B: it's a new error (otherwise it's a repeated error). Prob C: if new error, prob that it's
a real sequence collision (otherwise it's a new spurious sequence) - DONE
TODO: Implement discrete frequency distributions using Vose's Alias Method
*/
import org.apache.commons.rng.sampling.distribution.RejectionInversionZipfSampler;
import org.apache.commons.rng.simple.JDKRandomWrapper;
import java.util.*;
public class Plate {
private CellSample cells;
private String sourceFile;
private List<List<Integer[]>> wells;
private Random rand = new Random();
private String filename;
private List<List<String[]>> wells;
private final Random rand = BiGpairSEQ.getRand();
private int size;
private double error;
private Integer[] populations;
private double stdDev;
private double lambda;
boolean exponential = false;
private double zipfExponent;
private DistributionType distributionType;
public Plate(CellSample cells, String cellFilename, int numWells, Integer[] populations,
double dropoutRate, double parameter){
this.cells = cells;
this.sourceFile = cellFilename;
this.size = numWells;
this.wells = new ArrayList<>();
this.error = dropoutRate;
this.populations = populations;
this.stdDev = parameter;
this.lambda = parameter;
this.zipfExponent = parameter;
this.distributionType = BiGpairSEQ.getDistributionType();
fillWells(cells.getCells());
}
public Plate(int size, double error, Integer[] populations) {
@@ -26,52 +56,52 @@ public class Plate {
wells = new ArrayList<>();
}
public Plate(String sourceFileName, List<List<Integer[]>> wells) {
this.sourceFile = sourceFileName;
//constructor for returning a Plate from a PlateFileReader
public Plate(String filename, List<List<String[]>> wells) {
this.filename = filename;
this.wells = wells;
this.size = wells.size();
double totalCellCount = 0.0;
double totalDropoutCount = 0.0;
List<Integer> concentrations = new ArrayList<>();
for (List<Integer[]> w: wells) {
for (List<String[]> w: wells) {
if(!concentrations.contains(w.size())){
concentrations.add(w.size());
}
for (String[] cell: w) {
totalCellCount += 1.0;
for (String sequence: cell) {
if("-1".equals(sequence)) {
totalDropoutCount += 1.0;
}
}
}
}
double totalSequenceCount = totalCellCount * 4;
this.error = totalDropoutCount / totalSequenceCount;
this.populations = new Integer[concentrations.size()];
for (int i = 0; i < this.populations.length; i++) {
this.populations[i] = concentrations.get(i);
}
}
public void fillWellsExponential(String sourceFileName, List<Integer[]> cells, double lambda){
this.lambda = lambda;
exponential = true;
sourceFile = sourceFileName;
private void fillWellsZipf(List<String[]> cells, double exponent) {
int numSections = populations.length;
int section = 0;
double m;
int n;
int test=0;
RejectionInversionZipfSampler zipfSampler = new RejectionInversionZipfSampler(new JDKRandomWrapper(rand), cells.size(), exponent);
while (section < numSections){
for (int i = 0; i < (size / numSections); i++) {
List<Integer[]> well = new ArrayList<>();
List<String[]> well = new ArrayList<>();
for (int j = 0; j < populations[section]; j++) {
do {
//inverse transform sampling: for random number u in [0,1), x = log(1-u) / (-lambda)
m = (Math.log10((1 - rand.nextDouble()))/(-lambda)) * Math.sqrt(cells.size());
} while (m >= cells.size() || m < 0);
n = (int) Math.floor(m);
//n = Equations.getRandomNumber(0, cells.size());
// was testing generating the cell sample file with exponential dist, then sampling flat here
//that would be more realistic
//But would mess up other things in the simulation with how I've coded it.
if(n > test){
test = n;
}
Integer[] cellToAdd = cells.get(n).clone();
n = zipfSampler.sample();
} while (n >= cells.size() || n < 0);
String[] cellToAdd = cells.get(n).clone();
for(int k = 0; k < cellToAdd.length; k++){
if(Math.abs(rand.nextDouble()) < error){//error applied to each seqeunce
cellToAdd[k] = -1;
if(Math.abs(rand.nextDouble()) < error){//error applied to each sequence
cellToAdd[k] = "-1";
}
}
well.add(cellToAdd);
@@ -80,28 +110,26 @@ public class Plate {
}
section++;
}
System.out.println("Highest index: " +test);
}
public void fillWells(String sourceFileName, List<Integer[]> cells, double stdDev) {
this.stdDev = stdDev;
sourceFile = sourceFileName;
private void fillWellsExponential(List<String[]> cells, double lambda){
int numSections = populations.length;
int section = 0;
double m;
int n;
while (section < numSections){
for (int i = 0; i < (size / numSections); i++) {
List<Integer[]> well = new ArrayList<>();
List<String[]> well = new ArrayList<>();
for (int j = 0; j < populations[section]; j++) {
do {
m = (rand.nextGaussian() * stdDev) + (cells.size() / 2);
//inverse transform sampling: for random number u in [0,1), x = log(1-u) / (-lambda)
m = (Math.log10((1 - rand.nextDouble()))/(-lambda)) * Math.sqrt(cells.size());
} while (m >= cells.size() || m < 0);
n = (int) Math.floor(m);
Integer[] cellToAdd = cells.get(n).clone();
String[] cellToAdd = cells.get(n).clone();
for(int k = 0; k < cellToAdd.length; k++){
if(Math.abs(rand.nextDouble()) < error){//error applied to each sequence
cellToAdd[k] = -1;
if(Math.abs(rand.nextDouble()) <= error){//error applied to each sequence
cellToAdd[k] = "-1";
}
}
well.add(cellToAdd);
@@ -112,6 +140,52 @@ public class Plate {
}
}
private void fillWells( List<String[]> cells, double stdDev) {
this.stdDev = stdDev;
int numSections = populations.length;
int section = 0;
double m;
int n;
while (section < numSections){
for (int i = 0; i < (size / numSections); i++) {
List<String[]> well = new ArrayList<>();
for (int j = 0; j < populations[section]; j++) {
do {
m = (rand.nextGaussian() * stdDev) + (cells.size() / 2);
} while (m >= cells.size() || m < 0);
n = (int) Math.floor(m);
String[] cellToAdd = cells.get(n).clone();
for(int k = 0; k < cellToAdd.length; k++){
if(Math.abs(rand.nextDouble()) < error){//error applied to each sequence
cellToAdd[k] = "-1";
}
}
well.add(cellToAdd);
}
wells.add(well);
}
section++;
}
}
private void fillWells(List<String[]> cells){
DistributionType type = BiGpairSEQ.getDistributionType();
switch (type) {
case POISSON, GAUSSIAN -> {
fillWells(cells, getStdDev());
break;
}
case EXPONENTIAL -> {
fillWellsExponential(cells, getLambda());
break;
}
case ZIPF -> {
fillWellsZipf(cells, getZipfExponent());
break;
}
}
}
public Integer[] getPopulations(){
return populations;
}
@@ -124,48 +198,122 @@ public class Plate {
return stdDev;
}
public boolean isExponential(){return exponential;}
public DistributionType getDistributionType() { return distributionType;}
public double getLambda(){return lambda;}
public double getZipfExponent(){return zipfExponent;}
public double getError() {
return error;
}
public List<List<Integer[]>> getWells() {
public List<List<String[]>> getWells() {
return wells;
}
//returns a map of the counts of the sequence at cell index sIndex, in all wells
public Map<Integer, Integer> assayWellsSequenceS(int... sIndices){
return this.assayWellsSequenceS(0, size, sIndices);
}
//returns a map of the counts of the sequence at cell index sIndex, in a specific well
public Map<Integer, Integer> assayWellsSequenceS(int n, int... sIndices) { return this.assayWellsSequenceS(n, n+1, sIndices);}
//returns a map of the counts of the sequence at cell index sIndex, in a range of wells
public Map<Integer, Integer> assayWellsSequenceS(int start, int end, int... sIndices) {
Map<Integer,Integer> assay = new HashMap<>();
for(int pIndex: sIndices){
for(int i = start; i < end; i++){
countSequences(assay, wells.get(i), pIndex);
}
}
return assay;
}
//For the sequences at cell indices sIndices, counts number of unique sequences in the given well into the given map
private void countSequences(Map<Integer, Integer> wellMap, List<Integer[]> well, int... sIndices) {
for(Integer[] cell : well) {
for(int sIndex: sIndices){
if(cell[sIndex] != -1){
wellMap.merge(cell[sIndex], 1, (oldValue, newValue) -> oldValue + newValue);
//For the sequences at cell indices sIndices, counts number of unique sequences in all wells.
//Also simulates sequence read errors with given probabilities.
//Returns a map of SequenceRecords containing plate data for all sequences read.
//TODO actually implement usage of misreadSequences - DONE
public Map<String, SequenceRecord> countSequences(Integer readDepth, Double readErrorRate,
Double errorCollisionRate, Double realSequenceCollisionRate, int... sIndices) {
SequenceType[] sequenceTypes = EnumSet.allOf(SequenceType.class).toArray(new SequenceType[0]);
//Map of all real sequences read. Keys are sequences, values are ways sequence has been misread.
Map<String, List<String>> sequencesAndMisreads = new HashMap<>();
//Map of all sequences read. Keys are sequences, values are associated SequenceRecords
Map<String, SequenceRecord> sequenceMap = new LinkedHashMap<>();
//get list of all distinct, real sequences
String[] realSequences = assayWells(sIndices).toArray(new String[0]);
for (int well = 0; well < size; well++) {
for (String[] cell: wells.get(well)) {
for (int sIndex: sIndices) {
//the sequence being read
String currentSequence = cell[sIndex];
//skip dropout sequences, which have value -1
if (!"-1".equals(currentSequence)) {
//keep rereading the sequence until the read depth is reached
for (int j = 0; j < readDepth; j++) {
//The sequence is misread
if (rand.nextDouble() < readErrorRate) {
//The sequence hasn't been read or misread before
if (!sequencesAndMisreads.containsKey(currentSequence)) {
sequencesAndMisreads.put(currentSequence, new ArrayList<>());
}
//The specific misread hasn't happened before
if (rand.nextDouble() >= errorCollisionRate || sequencesAndMisreads.get(currentSequence).isEmpty()) {
//The misread doesn't collide with a real sequence already on the plate and some sequences have already been read
if(rand.nextDouble() >= realSequenceCollisionRate || !sequenceMap.isEmpty()){
StringBuilder spurious = new StringBuilder(currentSequence);
for (int k = 0; k <= sequencesAndMisreads.get(currentSequence).size(); k++) {
spurious.append("*");
}
//New sequence record for the spurious sequence
SequenceRecord tmp = new SequenceRecord(spurious.toString(), sequenceTypes[sIndex]);
tmp.addRead(well);
sequenceMap.put(spurious.toString(), tmp);
//add spurious sequence to list of misreads for the real sequence
sequencesAndMisreads.get(currentSequence).add(spurious.toString());
}
//The misread collides with a real sequence already read from plate
else {
String wrongSequence;
do{
//get a random real sequence that's been read from the plate before
int index = rand.nextInt(realSequences.length);
wrongSequence = realSequences[index];
//make sure it's not accidentally the *right* sequence
//Also that it's not a wrong sequence already in the misread list
} while(currentSequence.equals(wrongSequence) || sequencesAndMisreads.get(currentSequence).contains(wrongSequence));
//update the SequenceRecord for wrongSequence
sequenceMap.get(wrongSequence).addRead(well);
//add wrongSequence to the misreads for currentSequence
sequencesAndMisreads.get(currentSequence).add(wrongSequence);
}
}
}
//The sequence is read correctly
else {
//the sequence hasn't been read before
if (!sequenceMap.containsKey(currentSequence)) {
//create new record for the sequence
SequenceRecord tmp = new SequenceRecord(currentSequence, sequenceTypes[sIndex]);
//add this read to the sequence record
tmp.addRead(well);
//add the sequence and its record to the sequence map
sequenceMap.put(currentSequence, tmp);
//add the sequence to the sequences and misreads map
sequencesAndMisreads.put(currentSequence, new ArrayList<>());
}
//the sequence has been read before
else {
//get the sequence's record and add this read to it
sequenceMap.get(currentSequence).addRead(well);
}
}
}
}
}
}
}
return sequenceMap;
}
private HashSet<String> assayWells(int[] indices) {
HashSet<String> allSequences = new HashSet<>();
for (List<String[]> well: wells) {
for (String[] cell: well) {
for(int index: indices) {
allSequences.add(cell[index]);
}
}
}
return allSequences;
}
public String getSourceFileName() {
return sourceFile;
}
public String getFilename() { return filename; }
}

View File

@@ -13,7 +13,7 @@ import java.util.regex.Pattern;
public class PlateFileReader {
private List<List<Integer[]>> wells = new ArrayList<>();
private List<List<String[]>> wells = new ArrayList<>();
private String filename;
public PlateFileReader(String filename){
@@ -32,17 +32,17 @@ public class PlateFileReader {
CSVParser parser = new CSVParser(reader, plateFileFormat);
){
for(CSVRecord record: parser.getRecords()) {
List<Integer[]> well = new ArrayList<>();
List<String[]> well = new ArrayList<>();
for(String s: record) {
if(!"".equals(s)) {
String[] intString = s.replaceAll("\\[", "")
String[] sequences = s.replaceAll("\\[", "")
.replaceAll("]", "")
.replaceAll(" ", "")
.split(",");
//System.out.println(intString);
Integer[] arr = new Integer[intString.length];
for (int i = 0; i < intString.length; i++) {
arr[i] = Integer.valueOf(intString[i]);
//System.out.println(sequences);
String[] arr = new String[sequences.length];
for (int i = 0; i < sequences.length; i++) {
arr[i] = sequences[i];
}
well.add(arr);
}
@@ -56,11 +56,8 @@ public class PlateFileReader {
}
public List<List<Integer[]>> getWells() {
return wells;
public Plate getSamplePlate() {
return new Plate(filename, wells);
}
public String getFilename() {
return filename;
}
}

View File

@@ -10,14 +10,16 @@ import java.util.*;
public class PlateFileWriter {
private int size;
private List<List<Integer[]>> wells;
private List<List<String[]>> wells;
private double stdDev;
private double lambda;
private double zipfExponent;
private DistributionType distributionType;
private Double error;
private String filename;
private String sourceFileName;
private Integer[] concentrations;
private boolean isExponential = false;
private Integer[] populations;
public PlateFileWriter(String filename, Plate plate) {
if(!filename.matches(".*\\.csv")){
@@ -26,27 +28,32 @@ public class PlateFileWriter {
this.filename = filename;
this.sourceFileName = plate.getSourceFileName();
this.size = plate.getSize();
this.isExponential = plate.isExponential();
if(isExponential) {
this.lambda = plate.getLambda();
}
else{
this.stdDev = plate.getStdDev();
this.distributionType = plate.getDistributionType();
switch(distributionType) {
case POISSON, GAUSSIAN -> {
this.stdDev = plate.getStdDev();
}
case EXPONENTIAL -> {
this.lambda = plate.getLambda();
}
case ZIPF -> {
this.zipfExponent = plate.getZipfExponent();
}
}
this.error = plate.getError();
this.wells = plate.getWells();
this.concentrations = plate.getPopulations();
Arrays.sort(concentrations);
this.populations = plate.getPopulations();
Arrays.sort(populations);
}
public void writePlateFile(){
Comparator<List<Integer[]>> listLengthDescending = Comparator.comparingInt(List::size);
Comparator<List<String[]>> listLengthDescending = Comparator.comparingInt(List::size);
wells.sort(listLengthDescending.reversed());
int maxLength = wells.get(0).size();
List<List<String>> wellsAsStrings = new ArrayList<>();
for (List<Integer[]> w: wells){
for (List<String[]> w: wells){
List<String> tmp = new ArrayList<>();
for(Integer[] c: w) {
for(String[] c: w) {
tmp.add(Arrays.toString(c));
}
wellsAsStrings.add(tmp);
@@ -73,14 +80,12 @@ public class PlateFileWriter {
// rows.add(tmp);
// }
//get list of well populations
List<Integer> wellPopulations = Arrays.asList(concentrations);
//make string out of populations list
//make string out of populations array
StringBuilder populationsStringBuilder = new StringBuilder();
populationsStringBuilder.append(wellPopulations.remove(0).toString());
for(Integer i: wellPopulations){
populationsStringBuilder.append(populations[0].toString());
for(int i = 1; i < populations.length; i++){
populationsStringBuilder.append(", ");
populationsStringBuilder.append(i.toString());
populationsStringBuilder.append(populations[i].toString());
}
String wellPopulationsString = populationsStringBuilder.toString();
@@ -95,13 +100,24 @@ public class PlateFileWriter {
printer.printComment("Cell source file name: " + sourceFileName);
printer.printComment("Each row represents one well on the plate.");
printer.printComment("Plate size: " + size);
printer.printComment("Error rate: " + error);
printer.printComment("Well populations: " + wellPopulationsString);
if(isExponential){
printer.printComment("Lambda: " + lambda);
}
else {
printer.printComment("Std. dev.: " + stdDev);
printer.printComment("Error rate: " + error);
switch (distributionType) {
case POISSON -> {
printer.printComment("Cell frequency distribution: POISSON");
}
case GAUSSIAN -> {
printer.printComment("Cell frequency distribution: GAUSSIAN");
printer.printComment("--Standard deviation: " + stdDev);
}
case EXPONENTIAL -> {
printer.printComment("Cell frequency distribution: EXPONENTIAL");
printer.printComment("--Lambda: " + lambda);
}
case ZIPF -> {
printer.printComment("Cell frequency distribution: ZIPF");
printer.printComment("--Exponent: " + zipfExponent);
}
}
printer.printRecords(wellsAsStrings);
} catch(IOException ex){

View File

@@ -0,0 +1,70 @@
/*
Class to represent individual sequences, holding their well occupancy and read count information.
Will make a map of these keyed to the sequences themselves.
Ideally, I'll be able to construct both the Vertices and the weights matrix from this map.
*/
import java.io.Serializable;
import java.util.*;
public class SequenceRecord implements Serializable {
private final String sequence;
private final SequenceType type;
//keys are well numbers, values are read count in that well
private final Map<Integer, Integer> wells;
public SequenceRecord (String sequence, SequenceType type) {
this.sequence = sequence;
this.type = type;
this.wells = new LinkedHashMap<>();
}
//this shouldn't be necessary, since the sequence will be the map key, but
public String getSequence() {
return sequence;
}
public SequenceType getSequenceType(){
return type;
}
//use this to update the record for each new read
public void addRead(Integer wellNumber) {
wells.merge(wellNumber,1, Integer::sum);
}
//don't know if I'll ever need this
public void addWellData(Integer wellNumber, Integer readCount) {
wells.put(wellNumber, readCount);
}
//Method to remove a well from the occupancy map.
//Useful for cases where one sequence is misread as another sequence that isn't actually present in the well
//This can reveal itself as an anomalously low read count in that well.
public void deleteWell(Integer wellNumber) { wells.remove(wellNumber); }
public Set<Integer> getWells() {
return wells.keySet();
}
public Map<Integer, Integer> getWellOccupancies() { return wells;}
public boolean isInWell(Integer wellNumber) {
return wells.containsKey(wellNumber);
}
public Integer getOccupancy() {
return wells.size();
}
//read count for whole plate
public Integer getReadCount(){
return wells.values().stream().mapToInt(Integer::valueOf).sum();
}
//read count in a specific well
public Integer getReadCount(Integer wellNumber) {
return wells.get(wellNumber);
}
}

View File

@@ -0,0 +1,8 @@
//enum for tagging types of sequences
//Listed in order that they appear in a cell array, so ordinal() method will return correct index
public enum SequenceType {
CDR3_ALPHA,
CDR3_BETA,
CDR1_ALPHA,
CDR1_BETA
}

View File

@@ -1,7 +1,6 @@
import org.jgrapht.Graph;
import org.jgrapht.Graphs;
import org.jgrapht.alg.interfaces.MatchingAlgorithm;
import org.jgrapht.alg.matching.MaximumWeightBipartiteMatching;
import org.jgrapht.generate.SimpleWeightedBipartiteGraphMatrixGenerator;
import org.jgrapht.graph.DefaultWeightedEdge;
import org.jgrapht.graph.SimpleWeightedGraph;
import org.jheaps.tree.PairingHeap;
@@ -12,130 +11,175 @@ import java.text.NumberFormat;
import java.time.Instant;
import java.time.Duration;
import java.util.*;
import java.util.stream.IntStream;
//NOTE: "sequence" in method and variable names refers to a peptide sequence from a simulated T cell
public class Simulator {
private static final int cdr3AlphaIndex = 0;
private static final int cdr3BetaIndex = 1;
private static final int cdr1AlphaIndex = 2;
private static final int cdr1BetaIndex = 3;
public class Simulator implements GraphModificationFunctions {
public static CellSample generateCellSample(Integer numDistinctCells, Integer cdr1Freq) {
//In real T cells, CDR1s have about one third the diversity of CDR3s
List<Integer> numbersCDR3 = new ArrayList<>();
List<Integer> numbersCDR1 = new ArrayList<>();
Integer numDistCDR3s = 2 * numDistinctCells + 1;
IntStream.range(1, numDistCDR3s + 1).forEach(i -> numbersCDR3.add(i));
IntStream.range(numDistCDR3s + 1, numDistCDR3s + 1 + (numDistCDR3s / cdr1Freq) + 1).forEach(i -> numbersCDR1.add(i));
Collections.shuffle(numbersCDR3);
Collections.shuffle(numbersCDR1);
//Each cell represented by 4 values
//two CDR3s, and two CDR1s. First two values are CDR3s (alpha, beta), second two are CDR1s (alpha, beta)
List<Integer[]> distinctCells = new ArrayList<>();
for(int i = 0; i < numbersCDR3.size() - 1; i = i + 2){
Integer tmpCDR3a = numbersCDR3.get(i);
Integer tmpCDR3b = numbersCDR3.get(i+1);
Integer tmpCDR1a = numbersCDR1.get(i % numbersCDR1.size());
Integer tmpCDR1b = numbersCDR1.get((i+1) % numbersCDR1.size());
Integer[] tmp = {tmpCDR3a, tmpCDR3b, tmpCDR1a, tmpCDR1b};
distinctCells.add(tmp);
}
return new CellSample(distinctCells, cdr1Freq);
}
//Make the graph needed for matching CDR3s
public static GraphWithMapData makeGraph(List<Integer[]> distinctCells, Plate samplePlate, boolean verbose) {
public static GraphWithMapData makeCDR3Graph(CellSample cellSample, Plate samplePlate, int readDepth,
double readErrorRate, double errorCollisionRate,
double realSequenceCollisionRate, boolean verbose) {
//start timing
Instant start = Instant.now();
int[] alphaIndex = {cdr3AlphaIndex};
int[] betaIndex = {cdr3BetaIndex};
int[] alphaIndices = {SequenceType.CDR3_ALPHA.ordinal()};
int[] betaIndices = {SequenceType.CDR3_BETA.ordinal()};
List<String[]> distinctCells = cellSample.getCells();
int numWells = samplePlate.getSize();
//Make a hashmap keyed to alphas, values are associated betas.
if(verbose){System.out.println("Making cell maps");}
//HashMap keyed to Alphas, values Betas
Map<Integer, Integer> distCellsMapAlphaKey = makeSequenceToSequenceMap(distinctCells, 0, 1);
Map<String, String> distCellsMapAlphaKey = makeSequenceToSequenceMap(distinctCells,
SequenceType.CDR3_ALPHA.ordinal(), SequenceType.CDR3_BETA.ordinal());
if(verbose){System.out.println("Cell maps made");}
if(verbose){System.out.println("Making well maps");}
Map<Integer, Integer> allAlphas = samplePlate.assayWellsSequenceS(alphaIndex);
Map<Integer, Integer> allBetas = samplePlate.assayWellsSequenceS(betaIndex);
int alphaCount = allAlphas.size();
if(verbose){System.out.println("All alphas count: " + alphaCount);}
int betaCount = allBetas.size();
if(verbose){System.out.println("All betas count: " + betaCount);}
if(verbose){System.out.println("Well maps made");}
//Make linkedHashMap keyed to sequences, values are SequenceRecords reflecting plate statistics
if(verbose){System.out.println("Making sample plate sequence maps");}
Map<String, SequenceRecord> alphaSequences = samplePlate.countSequences(readDepth, readErrorRate,
errorCollisionRate, realSequenceCollisionRate, alphaIndices);
int alphaCount = alphaSequences.size();
if(verbose){System.out.println("Alphas sequences read: " + alphaCount);}
Map<String, SequenceRecord> betaSequences = samplePlate.countSequences(readDepth, readErrorRate,
errorCollisionRate, realSequenceCollisionRate, betaIndices);
int betaCount = betaSequences.size();
if(verbose){System.out.println("Betas sequences read: " + betaCount);}
if(verbose){System.out.println("Sample plate sequence maps made");}
//pre-filter saturating sequences and sequences likely to be misreads
if(verbose){System.out.println("Removing sequences present in all wells.");}
filterByOccupancyThresholds(allAlphas, 1, numWells - 1);
filterByOccupancyThresholds(allBetas, 1, numWells - 1);
filterByOccupancyThresholds(alphaSequences, 1, numWells - 1);
filterByOccupancyThresholds(betaSequences, 1, numWells - 1);
if(verbose){System.out.println("Sequences removed");}
int pairableAlphaCount = allAlphas.size();
if(verbose){System.out.println("Remaining alphas count: " + pairableAlphaCount);}
int pairableBetaCount = allBetas.size();
if(verbose){System.out.println("Remaining betas count: " + pairableBetaCount);}
if(verbose){System.out.println("Remaining alpha sequence count: " + alphaSequences.size());}
if(verbose){System.out.println("Remaining beta sequence count: " + betaSequences.size());}
if (readDepth > 1) {
if(verbose){System.out.println("Removing sequences with disparate occupancies and read counts");}
filterByOccupancyAndReadCount(alphaSequences, readDepth);
filterByOccupancyAndReadCount(betaSequences, readDepth);
if(verbose){System.out.println("Sequences removed");}
if(verbose){System.out.println("Remaining alpha sequence count: " + alphaSequences.size());}
if(verbose){System.out.println("Remaining beta sequence count: " + betaSequences.size());}
}
if (realSequenceCollisionRate > 0.0) {
if(verbose){System.out.println("Removing wells with anomalous read counts from sequence records");}
int alphaWellsRemoved = filterWellsByReadCount(alphaSequences);
int betaWellsRemoved = filterWellsByReadCount(betaSequences);
if(verbose){System.out.println("Wells with anomalous read counts removed from sequence records");}
if(verbose){System.out.println("Total alpha sequence wells removed: " + alphaWellsRemoved);}
if(verbose){System.out.println("Total beta sequence wells removed: " + betaWellsRemoved);}
}
if(verbose){System.out.println("Making vertex maps");}
//For the SimpleWeightedBipartiteGraphMatrixGenerator, all vertices must have
//distinct numbers associated with them. Since I'm using a 2D array, that means
//distinct indices between the rows and columns. vertexStartValue lets me track where I switch
//from numbering rows to columns, so I can assign unique numbers to every vertex, and then
//subtract the vertexStartValue from betas to use their vertex labels as array indices
Integer vertexStartValue = 0;
//keys are sequential integer vertices, values are alphas
Map<Integer, Integer> plateVtoAMap = makeVertexToSequenceMap(allAlphas, vertexStartValue);
//new start value for vertex to beta map should be one more than final vertex value in alpha map
vertexStartValue += plateVtoAMap.size();
//keys are sequential integers vertices, values are betas
Map<Integer, Integer> plateVtoBMap = makeVertexToSequenceMap(allBetas, vertexStartValue);
//keys are alphas, values are sequential integer vertices from previous map
Map<Integer, Integer> plateAtoVMap = invertVertexMap(plateVtoAMap);
//keys are betas, values are sequential integer vertices from previous map
Map<Integer, Integer> plateBtoVMap = invertVertexMap(plateVtoBMap);
if(verbose){System.out.println("Vertex maps made");}
/*
* The commented out code below works beautifully for small enough graphs. However, after implementing a
* Zipf distribution and attempting to simulate Experiment 3 from the paper again, I discovered that
* this method uses too much memory. Even a 120GB heap is not enough to build this adjacency matrix.
* So I'm going to attempt to build this graph directly and see if that is less memory intensive
*/
// //construct the graph. For simplicity, going to make
// if(verbose){System.out.println("Making vertex maps");}
// //For the SimpleWeightedBipartiteGraphMatrixGenerator, all vertices must have
// //distinct numbers associated with them. Since I'm using a 2D array, that means
// //distinct indices between the rows and columns. vertexStartValue lets me track where I switch
// //from numbering rows to columns, so I can assign unique numbers to every vertex, and then
// //subtract the vertexStartValue from betas to use their vertex labels as array indices
// int vertexStartValue = 0;
// //keys are sequential integer vertices, values are alphas
// Map<String, Integer> plateAtoVMap = makeSequenceToVertexMap(alphaSequences, vertexStartValue);
// //new start value for vertex to beta map should be one more than final vertex value in alpha map
// vertexStartValue += plateAtoVMap.size();
// //keys are betas, values are sequential integers
// Map<String, Integer> plateBtoVMap = makeSequenceToVertexMap(betaSequences, vertexStartValue);
// if(verbose){System.out.println("Vertex maps made");}
// //make adjacency matrix for bipartite graph generator
// //(technically this is only 1/4 of an adjacency matrix, but that's all you need
// //for a bipartite graph, and all the SimpleWeightedBipartiteGraphMatrixGenerator class expects.)
// if(verbose){System.out.println("Making adjacency matrix");}
// double[][] weights = new double[plateAtoVMap.size()][plateBtoVMap.size()];
// fillAdjacencyMatrix(weights, vertexStartValue, alphaSequences, betaSequences, plateAtoVMap, plateBtoVMap);
// if(verbose){System.out.println("Adjacency matrix made");}
// //make bipartite graph
// if(verbose){System.out.println("Making bipartite weighted graph");}
// //the graph object
// SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph =
// new SimpleWeightedGraph<>(DefaultWeightedEdge.class);
// //the graph generator
// SimpleWeightedBipartiteGraphMatrixGenerator graphGenerator = new SimpleWeightedBipartiteGraphMatrixGenerator();
// //the list of alpha vertices
// List<Vertex> alphaVertices = new ArrayList<>();
// for (String seq : plateAtoVMap.keySet()) {
// Vertex alphaVertex = new Vertex(alphaSequences.get(seq), plateAtoVMap.get(seq));
// alphaVertices.add(alphaVertex);
// }
// //Sort to make sure the order of vertices in list matches the order of the adjacency matrix
// Collections.sort(alphaVertices);
// //Add ordered list of vertices to the graph
// graphGenerator.first(alphaVertices);
// //the list of beta vertices
// List<Vertex> betaVertices = new ArrayList<>();
// for (String seq : plateBtoVMap.keySet()) {
// Vertex betaVertex = new Vertex(betaSequences.get(seq), plateBtoVMap.get(seq));
// betaVertices.add(betaVertex);
// }
// //Sort to make sure the order of vertices in list matches the order of the adjacency matrix
// Collections.sort(betaVertices);
// //Add ordered list of vertices to the graph
// graphGenerator.second(betaVertices);
// //use adjacency matrix of weight created previously
// graphGenerator.weights(weights);
// graphGenerator.generateGraph(graph);
//make adjacency matrix for bipartite graph generator
//(technically this is only 1/4 of an adjacency matrix, but that's all you need
//for a bipartite graph, and all the SimpleWeightedBipartiteGraphMatrixGenerator class expects.)
if(verbose){System.out.println("Creating adjacency matrix");}
//Count how many wells each alpha appears in
Map<Integer, Integer> alphaWellCounts = new HashMap<>();
//count how many wells each beta appears in
Map<Integer, Integer> betaWellCounts = new HashMap<>();
//the adjacency matrix to be used by the graph generator
double[][] weights = new double[plateVtoAMap.size()][plateVtoBMap.size()];
countSequencesAndFillMatrix(samplePlate, allAlphas, allBetas, plateAtoVMap,
plateBtoVMap, alphaIndex, betaIndex, alphaWellCounts, betaWellCounts, weights);
if(verbose){System.out.println("Matrix created");}
//create bipartite graph
if(verbose){System.out.println("Creating graph");}
//make bipartite graph
if(verbose){System.out.println("Making bipartite weighted graph");}
//the graph object
SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph =
SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph =
new SimpleWeightedGraph<>(DefaultWeightedEdge.class);
//the graph generator
SimpleWeightedBipartiteGraphMatrixGenerator graphGenerator = new SimpleWeightedBipartiteGraphMatrixGenerator();
//the list of alpha vertices
List<Integer> alphaVertices = new ArrayList<>(plateVtoAMap.keySet()); //This will work because LinkedHashMap preserves order of entry
graphGenerator.first(alphaVertices);
//the list of beta vertices
List<Integer> betaVertices = new ArrayList<>(plateVtoBMap.keySet());
graphGenerator.second(betaVertices); //This will work because LinkedHashMap preserves order of entry
//use adjacency matrix of weight created previously
graphGenerator.weights(weights);
graphGenerator.generateGraph(graph);
int vertexLabelValue = 0;
//create and add alpha sequence vertices
List<Vertex> alphaVertices = new ArrayList<>();
for (Map.Entry<String, SequenceRecord> entry: alphaSequences.entrySet()) {
alphaVertices.add(new Vertex(entry.getValue(), vertexLabelValue));
vertexLabelValue++;
}
alphaVertices.forEach(graph::addVertex);
//add beta sequence vertices
List<Vertex> betaVertices = new ArrayList<>();
for (Map.Entry<String, SequenceRecord> entry: betaSequences.entrySet()) {
betaVertices.add(new Vertex(entry.getValue(), vertexLabelValue));
vertexLabelValue++;
}
betaVertices.forEach(graph::addVertex);
//add edges (best so far)
int edgesAddedCount = 0;
for(Vertex a: alphaVertices) {
Set<Integer> a_wells = a.getRecord().getWells();
for(Vertex b: betaVertices) {
Set<Integer> sharedWells = new HashSet<>(a_wells);
sharedWells.retainAll(b.getRecord().getWells());
if (!sharedWells.isEmpty()) {
Graphs.addEdge(graph, a, b, (double) sharedWells.size());
}
edgesAddedCount++;
if (edgesAddedCount % 10000000 == 0) { //collect garbage every 10,000,000 edges
System.out.println(edgesAddedCount + " edges added");
//request garbage collection
System.gc();
System.out.println("Garbage collection requested");
}
}
}
if(verbose){System.out.println("Graph created");}
//stop timing
Instant stop = Instant.now();
Duration time = Duration.between(start, stop);
//create GraphWithMapData object
GraphWithMapData output = new GraphWithMapData(graph, numWells, samplePlate.getPopulations(), alphaCount, betaCount,
distCellsMapAlphaKey, plateVtoAMap, plateVtoBMap, plateAtoVMap,
plateBtoVMap, alphaWellCounts, betaWellCounts, time);
//Set source file name in graph to name of sample plate
output.setSourceFilename(samplePlate.getSourceFileName());
GraphWithMapData output = new GraphWithMapData(graph, numWells, samplePlate.getPopulations(), distCellsMapAlphaKey,
alphaCount, betaCount, samplePlate.getError(), readDepth, readErrorRate, errorCollisionRate, realSequenceCollisionRate, time);
//Set cell sample file name in graph to name of cell sample
output.setCellFilename(cellSample.getFilename());
//Set cell sample size in graph
output.setCellSampleSize(cellSample.getCellCount());
//Set sample plate file name in graph to name of sample plate
output.setPlateFilename(samplePlate.getFilename());
//return GraphWithMapData object
return output;
}
@@ -143,50 +187,80 @@ public class Simulator {
//match CDR3s.
public static MatchingResult matchCDR3s(GraphWithMapData data, String dataFilename, Integer lowThreshold,
Integer highThreshold, Integer maxOccupancyDifference,
Integer minOverlapPercent, boolean verbose) {
Integer minOverlapPercent, boolean verbose, boolean calculatePValue) {
Instant start = Instant.now();
//Integer arrays will contain TO VERTEX, FROM VERTEX, and WEIGHT (which I'll need to cast to double)
List<Integer[]> removedEdges = new ArrayList<>();
SimpleWeightedGraph<Vertex, DefaultWeightedEdge> graph = data.getGraph();
Map<DefaultWeightedEdge, Vertex[]> removedEdges = new HashMap<>();
boolean saveEdges = BiGpairSEQ.cacheGraph();
int numWells = data.getNumWells();
Integer alphaCount = data.getAlphaCount();
Integer betaCount = data.getBetaCount();
Map<Integer, Integer> distCellsMapAlphaKey = data.getDistCellsMapAlphaKey();
Map<Integer, Integer> plateVtoAMap = data.getPlateVtoAMap();
Map<Integer, Integer> plateVtoBMap = data.getPlateVtoBMap();
Map<Integer, Integer> alphaWellCounts = data.getAlphaWellCounts();
Map<Integer, Integer> betaWellCounts = data.getBetaWellCounts();
SimpleWeightedGraph<Integer, DefaultWeightedEdge> graph = data.getGraph();
//Integer alphaCount = data.getAlphaCount();
//Integer betaCount = data.getBetaCount();
Map<String, String> distCellsMapAlphaKey = data.getDistCellsMapAlphaKey();
Set<Vertex> alphas = new HashSet<>();
Set<Vertex> betas = new HashSet<>();
for(Vertex v: graph.vertexSet()) {
if (SequenceType.CDR3_ALPHA.equals(v.getType())){
alphas.add(v);
}
else {
betas.add(v);
}
}
Integer graphAlphaCount = alphas.size();
Integer graphBetaCount = betas.size();
Integer graphEdgeCount = graph.edgeSet().size();
//remove edges with weights outside given overlap thresholds, add those to removed edge list
if(verbose){System.out.println("Eliminating edges with weights outside overlap threshold values");}
removedEdges.addAll(GraphModificationFunctions.filterByOverlapThresholds(graph, lowThreshold, highThreshold));
removedEdges.putAll(GraphModificationFunctions.filterByOverlapThresholds(graph, lowThreshold, highThreshold, saveEdges));
if(verbose){System.out.println("Over- and under-weight edges removed");}
//remove edges between vertices with too small an overlap size, add those to removed edge list
if(verbose){System.out.println("Eliminating edges with weights less than " + minOverlapPercent.toString() +
" percent of vertex occupancy value.");}
removedEdges.addAll(GraphModificationFunctions.filterByOverlapPercent(graph, alphaWellCounts, betaWellCounts,
plateVtoAMap, plateVtoBMap, minOverlapPercent));
removedEdges.putAll(GraphModificationFunctions.filterByOverlapPercent(graph, minOverlapPercent, saveEdges));
if(verbose){System.out.println("Edges with weights too far below a vertex occupancy value removed");}
//Filter by relative occupancy
if(verbose){System.out.println("Eliminating edges between vertices with occupancy difference > "
+ maxOccupancyDifference);}
removedEdges.addAll(GraphModificationFunctions.filterByRelativeOccupancy(graph, alphaWellCounts, betaWellCounts,
plateVtoAMap, plateVtoBMap, maxOccupancyDifference));
removedEdges.putAll(GraphModificationFunctions.filterByRelativeOccupancy(graph, maxOccupancyDifference, saveEdges));
if(verbose){System.out.println("Edges between vertices of with excessively different occupancy values " +
"removed");}
//Find Maximum Weighted Matching
//using jheaps library class PairingHeap for improved efficiency
if(verbose){System.out.println("Finding maximum weighted matching");}
//Attempting to use addressable heap to improve performance
MaximumWeightBipartiteMatching maxWeightMatching =
new MaximumWeightBipartiteMatching(graph,
plateVtoAMap.keySet(),
plateVtoBMap.keySet(),
i -> new PairingHeap(Comparator.naturalOrder()));
MatchingAlgorithm.Matching<String, DefaultWeightedEdge> graphMatching = maxWeightMatching.getMatching();
Integer filteredGraphEdgeCount = graph.edgeSet().size();
//Find Maximum Weight Matching
if(verbose){System.out.println("Finding maximum weight matching");}
//The matching object
MatchingAlgorithm<Vertex, DefaultWeightedEdge> maxWeightMatching;
//Determine algorithm type
AlgorithmType algorithm = BiGpairSEQ.getMatchingAlgorithmType();
switch (algorithm) { //Only two options now, but I have room to add more algorithms in the future this way
case AUCTION -> {
//create a new MaximumIntegerWeightBipartiteAuctionMatching
maxWeightMatching = new MaximumIntegerWeightBipartiteAuctionMatching<>(graph, alphas, betas);
}
case INTEGER_WEIGHT_SCALING -> {
maxWeightMatching = new MaximumIntegerWeightBipartiteMatching<>(graph, alphas, betas, new BigDecimal(highThreshold));
}
default -> { //HUNGARIAN
//use selected heap type for priority queue
HeapType heap = BiGpairSEQ.getPriorityQueueHeapType();
if(HeapType.PAIRING.equals(heap)) {
maxWeightMatching = new MaximumWeightBipartiteMatching<Vertex, DefaultWeightedEdge>(graph,
alphas,
betas,
i -> new PairingHeap(Comparator.naturalOrder()));
}
else {//Fibonacci is the default, and what's used in the JGraphT implementation
maxWeightMatching = new MaximumWeightBipartiteMatching<Vertex, DefaultWeightedEdge>(graph,
alphas,
betas);
}
}
}
MatchingAlgorithm.Matching<Vertex, DefaultWeightedEdge> matching = maxWeightMatching.getMatching();
if(verbose){System.out.println("Matching completed");}
Instant stop = Instant.now();
@@ -198,25 +272,25 @@ public class Simulator {
header.add("Beta well count");
header.add("Overlap well count");
header.add("Matched correctly?");
header.add("P-value");
if(calculatePValue) { header.add("P-value"); }
//Results for csv file
List<List<String>> allResults = new ArrayList<>();
NumberFormat nf = NumberFormat.getInstance(Locale.US);
MathContext mc = new MathContext(3);
Iterator<DefaultWeightedEdge> weightIter = graphMatching.iterator();
Iterator<DefaultWeightedEdge> weightIter = matching.iterator();
DefaultWeightedEdge e;
int trueCount = 0;
int falseCount = 0;
boolean check;
Map<Integer, Integer> matchMap = new HashMap<>();
Map<String, String> matchMap = new HashMap<>();
while(weightIter.hasNext()) {
e = weightIter.next();
Integer source = graph.getEdgeSource(e);
Integer target = graph.getEdgeTarget(e);
Vertex source = graph.getEdgeSource(e);
Vertex target = graph.getEdgeTarget(e);
//The match map is all matches found, not just true matches!
matchMap.put(plateVtoAMap.get(source), plateVtoBMap.get(target));
check = plateVtoBMap.get(target).equals(distCellsMapAlphaKey.get(plateVtoAMap.get(source)));
matchMap.put(source.getSequence(), target.getSequence());
check = target.getSequence().equals(distCellsMapAlphaKey.get(source.getSequence()));
if(check) {
trueCount++;
}
@@ -224,33 +298,58 @@ public class Simulator {
falseCount++;
}
List<String> result = new ArrayList<>();
result.add(plateVtoAMap.get(source).toString());
//alpha sequence
result.add(source.getSequence());
//alpha well count
result.add(alphaWellCounts.get(plateVtoAMap.get(source)).toString());
result.add(plateVtoBMap.get(target).toString());
result.add(source.getOccupancy().toString());
//beta sequence
result.add(target.getSequence());
//beta well count
result.add(betaWellCounts.get(plateVtoBMap.get(target)).toString());
result.add(target.getOccupancy().toString());
//overlap count
result.add(Double.toString(graph.getEdgeWeight(e)));
result.add(Boolean.toString(check));
double pValue = Equations.pValue(numWells, alphaWellCounts.get(plateVtoAMap.get(source)),
betaWellCounts.get(plateVtoBMap.get(target)), graph.getEdgeWeight(e));
BigDecimal pValueTrunc = new BigDecimal(pValue, mc);
result.add(pValueTrunc.toString());
if (calculatePValue) {
double pValue = Equations.pValue(numWells, source.getOccupancy(),
target.getOccupancy(), graph.getEdgeWeight(e));
BigDecimal pValueTrunc = new BigDecimal(pValue, mc);
result.add(pValueTrunc.toString());
}
allResults.add(result);
}
//Metadata comments for CSV file
int min = Math.min(alphaCount, betaCount);
String algoType;
switch(algorithm) {
case AUCTION -> {
algoType = "Auction algorithm";
}
case INTEGER_WEIGHT_SCALING -> {
algoType = "Integer weight scaling algorithm from Duan and Su (not yet perfectly implemented)";
}
default -> { //HUNGARIAN
algoType = "Hungarian algorithm with heap: " + BiGpairSEQ.getPriorityQueueHeapType().name();
}
}
int min = Math.min(graphAlphaCount, graphBetaCount);
//matching weight
Double matchingWeight = matching.getWeight();
//rate of attempted matching
double attemptRate = (double) (trueCount + falseCount) / min;
BigDecimal attemptRateTrunc = new BigDecimal(attemptRate, mc);
//rate of pairing error
double pairingErrorRate = (double) falseCount / (trueCount + falseCount);
BigDecimal pairingErrorRateTrunc = new BigDecimal(pairingErrorRate, mc);
//get list of well concentrations
Integer[] wellPopulations = data.getWellConcentrations();
//make string out of concentrations list
BigDecimal pairingErrorRateTrunc;
if(Double.isFinite(pairingErrorRate)) {
pairingErrorRateTrunc = new BigDecimal(pairingErrorRate, mc);
}
else{
pairingErrorRateTrunc = new BigDecimal(-1, mc);
}
//get list of well populations
Integer[] wellPopulations = data.getWellPopulations();
//make string out of populations list
StringBuilder populationsStringBuilder = new StringBuilder();
populationsStringBuilder.append(wellPopulations[0].toString());
for(int i = 1; i < wellPopulations.length; i++){
@@ -258,41 +357,63 @@ public class Simulator {
populationsStringBuilder.append(wellPopulations[i].toString());
}
String wellPopulationsString = populationsStringBuilder.toString();
//graph generation time
Duration graphTime = data.getTime();
//MWM run time
Duration pairingTime = Duration.between(start, stop);
//total simulation time
Duration time = Duration.between(start, stop);
time = time.plus(data.getTime());
Duration totalTime = graphTime.plus(pairingTime);
Map<String, String> metadata = new LinkedHashMap<>();
metadata.put("sample plate filename", data.getSourceFilename());
metadata.put("cell sample filename", data.getCellFilename());
metadata.put("cell sample size", data.getCellSampleSize().toString());
metadata.put("sample plate filename", data.getPlateFilename());
metadata.put("sample plate well count", data.getNumWells().toString());
metadata.put("sequence dropout rate", data.getDropoutRate().toString());
metadata.put("graph filename", dataFilename);
metadata.put("MWM algorithm type", algoType);
metadata.put("matching weight", matchingWeight.toString());
metadata.put("well populations", wellPopulationsString);
metadata.put("total alphas found", alphaCount.toString());
metadata.put("total betas found", betaCount.toString());
metadata.put("high overlap threshold", highThreshold.toString());
metadata.put("low overlap threshold", lowThreshold.toString());
metadata.put("maximum occupancy difference", maxOccupancyDifference.toString());
metadata.put("minimum overlap percent", minOverlapPercent.toString());
metadata.put("sequence read depth", data.getReadDepth().toString());
metadata.put("sequence read error rate", data.getReadErrorRate().toString());
metadata.put("read error collision rate", data.getErrorCollisionRate().toString());
metadata.put("real sequence collision rate", data.getRealSequenceCollisionRate().toString());
metadata.put("total alphas read from plate", data.getAlphaCount().toString());
metadata.put("total betas read from plate", data.getBetaCount().toString());
metadata.put("initial edges in graph", graphEdgeCount.toString());
metadata.put("alphas in graph (after pre-filtering)", graphAlphaCount.toString());
metadata.put("betas in graph (after pre-filtering)", graphBetaCount.toString());
metadata.put("final edges in graph (after pre-filtering)", filteredGraphEdgeCount.toString());
metadata.put("high overlap threshold for pairing", highThreshold.toString());
metadata.put("low overlap threshold for pairing", lowThreshold.toString());
metadata.put("minimum overlap percent for pairing", minOverlapPercent.toString());
metadata.put("maximum occupancy difference for pairing", maxOccupancyDifference.toString());
metadata.put("pairing attempt rate", attemptRateTrunc.toString());
metadata.put("correct pairing count", Integer.toString(trueCount));
metadata.put("incorrect pairing count", Integer.toString(falseCount));
metadata.put("pairing error rate", pairingErrorRateTrunc.toString());
metadata.put("simulation time", nf.format(time.toSeconds()));
metadata.put("time to generate graph (seconds)", nf.format(graphTime.toSeconds()));
metadata.put("time to pair sequences (seconds)",nf.format(pairingTime.toSeconds()));
metadata.put("total simulation time (seconds)", nf.format(totalTime.toSeconds()));
//create MatchingResult object
MatchingResult output = new MatchingResult(metadata, header, allResults, matchMap, time);
MatchingResult output = new MatchingResult(metadata, header, allResults, matchMap);
if(verbose){
for(String s: output.getComments()){
System.out.println(s);
}
}
//put the removed edges back on the graph
System.out.println("Restoring removed edges to graph.");
GraphModificationFunctions.addRemovedEdges(graph, removedEdges);
if(saveEdges) {
//put the removed edges back on the graph
System.out.println("Restoring removed edges to graph.");
GraphModificationFunctions.addRemovedEdges(graph, removedEdges);
}
//return MatchingResult object
return output;
}
//Commented out CDR1 matching until it's time to re-implement it
// //Simulated matching of CDR1s to CDR3s. Requires MatchingResult from prior run of matchCDR3s.
// public static MatchingResult[] matchCDR1s(List<Integer[]> distinctCells,
@@ -599,81 +720,97 @@ public class Simulator {
// }
//Remove sequences based on occupancy
public static void filterByOccupancyThresholds(Map<Integer, Integer> wellMap, int low, int high){
List<Integer> noise = new ArrayList<>();
for(Integer k: wellMap.keySet()){
if((wellMap.get(k) > high) || (wellMap.get(k) < low)){
private static void filterByOccupancyThresholds(Map<String, SequenceRecord> wellMap, int low, int high){
List<String> noise = new ArrayList<>();
for(String k: wellMap.keySet()){
if((wellMap.get(k).getOccupancy() > high) || (wellMap.get(k).getOccupancy() < low)){
noise.add(k);
}
}
for(Integer k: noise) {
for(String k: noise) {
wellMap.remove(k);
}
}
//Counts the well occupancy of the row peptides and column peptides into given maps, and
//fills weights in the given 2D array
private static void countSequencesAndFillMatrix(Plate samplePlate,
Map<Integer,Integer> allRowSequences,
Map<Integer,Integer> allColumnSequences,
Map<Integer,Integer> rowSequenceToVertexMap,
Map<Integer,Integer> columnSequenceToVertexMap,
int[] rowSequenceIndices,
int[] colSequenceIndices,
Map<Integer, Integer> rowSequenceCounts,
Map<Integer,Integer> columnSequenceCounts,
double[][] weights){
Map<Integer, Integer> wellNRowSequences = null;
Map<Integer, Integer> wellNColumnSequences = null;
int vertexStartValue = rowSequenceToVertexMap.size();
int numWells = samplePlate.getSize();
for (int n = 0; n < numWells; n++) {
wellNRowSequences = samplePlate.assayWellsSequenceS(n, rowSequenceIndices);
for (Integer a : wellNRowSequences.keySet()) {
if(allRowSequences.containsKey(a)){
rowSequenceCounts.merge(a, 1, (oldValue, newValue) -> oldValue + newValue);
}
private static void filterByOccupancyAndReadCount(Map<String, SequenceRecord> sequences, int readDepth) {
List<String> noise = new ArrayList<>();
for(String k : sequences.keySet()){
//the sequence read count should be more than half the occupancy times read depth if the read error rate is low
Integer threshold = (sequences.get(k).getOccupancy() * readDepth) / 2;
if(sequences.get(k).getReadCount() < threshold) {
noise.add(k);
}
wellNColumnSequences = samplePlate.assayWellsSequenceS(n, colSequenceIndices);
for (Integer b : wellNColumnSequences.keySet()) {
if(allColumnSequences.containsKey(b)){
columnSequenceCounts.merge(b, 1, (oldValue, newValue) -> oldValue + newValue);
}
}
for (Integer i : wellNRowSequences.keySet()) {
if(allRowSequences.containsKey(i)){
for (Integer j : wellNColumnSequences.keySet()) {
if(allColumnSequences.containsKey(j)){
weights[rowSequenceToVertexMap.get(i)][columnSequenceToVertexMap.get(j) - vertexStartValue] += 1.0;
}
}
}
}
}
for(String k : noise) {
sequences.remove(k);
}
}
private static Map<Integer, Integer> makeSequenceToSequenceMap(List<Integer[]> cells, int keySequenceIndex,
int valueSequenceIndex){
Map<Integer, Integer> keySequenceToValueSequenceMap = new HashMap<>();
for (Integer[] cell : cells) {
private static int filterWellsByReadCount(Map<String, SequenceRecord> sequences) {
int count = 0;
for (String k: sequences.keySet()) {
//If a sequence has read count R and appears in W wells, then on average its read count in each
//well should be R/W. Delete any wells where the read count is less than R/2W.
Integer threshold = sequences.get(k).getReadCount() / (2 * sequences.get(k).getOccupancy());
List<Integer> noise = new ArrayList<>();
for (Integer well: sequences.get(k).getWells()) {
if (sequences.get(k).getReadCount(well) < threshold) {
noise.add(well);
count++;
}
}
for (Integer well: noise) {
sequences.get(k).deleteWell(well);
}
}
return count;
}
private static Map<String, String> makeSequenceToSequenceMap(List<String[]> cells, int keySequenceIndex,
int valueSequenceIndex){
Map<String, String> keySequenceToValueSequenceMap = new HashMap<>();
for (String[] cell : cells) {
keySequenceToValueSequenceMap.put(cell[keySequenceIndex], cell[valueSequenceIndex]);
}
return keySequenceToValueSequenceMap;
}
private static Map<Integer, Integer> makeVertexToSequenceMap(Map<Integer, Integer> sequences, Integer startValue) {
Map<Integer, Integer> map = new LinkedHashMap<>(); //LinkedHashMap to preserve order of entry
private static Map<Integer, String> makeVertexToSequenceMap(Map<String, SequenceRecord> sequences, Integer startValue) {
Map<Integer, String> map = new LinkedHashMap<>(); //LinkedHashMap to preserve order of entry
Integer index = startValue;
for (Integer k: sequences.keySet()) {
for (String k: sequences.keySet()) {
map.put(index, k);
index++;
}
return map;
}
private static Map<Integer, Integer> invertVertexMap(Map<Integer, Integer> map) {
Map<Integer, Integer> inverse = new HashMap<>();
private static Map<String, Integer> makeSequenceToVertexMap(Map<String, SequenceRecord> sequences, Integer startValue) {
Map<String, Integer> map = new LinkedHashMap<>(); //LinkedHashMap to preserve order of entry
Integer index = startValue;
for (String k: sequences.keySet()) {
map.put(k, index);
index++;
}
return map;
}
private static void fillAdjacencyMatrix(double[][] weights, Integer vertexOffsetValue, Map<String, SequenceRecord> rowSequences,
Map<String, SequenceRecord> columnSequences, Map<String, Integer> rowToVertexMap,
Map<String, Integer> columnToVertexMap) {
for (String rowSeq: rowSequences.keySet()) {
for (Integer well: rowSequences.get(rowSeq).getWells()) {
for (String colSeq: columnSequences.keySet()) {
if (columnSequences.get(colSeq).isInWell(well)) {
weights[rowToVertexMap.get(rowSeq)][columnToVertexMap.get(colSeq) - vertexOffsetValue] += 1.0;
}
}
}
}
}
private static Map<String, Integer> invertVertexMap(Map<Integer, String> map) {
Map<String, Integer> inverse = new HashMap<>();
for (Integer k : map.keySet()) {
inverse.put(map.get(k), k);
}

View File

@@ -1,17 +1,85 @@
public class Vertex {
private final Integer peptide;
private final Integer occupancy;
import org.jheaps.AddressableHeap;
public Vertex(Integer peptide, Integer occupancy) {
this.peptide = peptide;
this.occupancy = occupancy;
import java.io.Serializable;
import java.util.Map;
public class Vertex implements Serializable, Comparable<Vertex> {
private SequenceRecord record;
private Integer vertexLabel;
private Double potential;
private AddressableHeap queue;
public Vertex(SequenceRecord record, Integer vertexLabel) {
this.record = record;
this.vertexLabel = vertexLabel;
}
public Integer getPeptide() {
return peptide;
public SequenceRecord getRecord() { return record; }
public SequenceType getType() { return record.getSequenceType(); }
public Integer getVertexLabel() {
return vertexLabel;
}
public String getSequence() {
return record.getSequence();
}
public Integer getOccupancy() {
return occupancy;
return record.getOccupancy();
}
public Integer getReadCount() { return record.getReadCount(); }
public Integer getReadCount(Integer well) { return record.getReadCount(well); }
public Map<Integer, Integer> getWellOccupancies() { return record.getWellOccupancies(); }
@Override //adapted from JGraphT example code
public int hashCode()
{
return (this.getSequence() == null) ? 0 : this.getSequence().hashCode();
}
@Override //adapted from JGraphT example code
public boolean equals(Object obj)
{
if (this == obj)
return true;
if (obj == null)
return false;
if (getClass() != obj.getClass())
return false;
Vertex other = (Vertex) obj;
if (this.getSequence() == null) {
return other.getSequence() == null;
} else {
return this.getSequence().equals(other.getSequence());
}
}
@Override //adapted from JGraphT example code
public String toString()
{
StringBuilder sb = new StringBuilder();
sb.append("(").append(vertexLabel)
.append(", Type: ").append(this.getType().name())
.append(", Sequence: ").append(this.getSequence())
.append(", Occupancy: ").append(this.getOccupancy()).append(")");
return sb.toString();
}
@Override
public int compareTo(Vertex other) {
return this.vertexLabel - other.getVertexLabel();
}
public Double getPotential() {
return potential;
}
public void setPotential(Double potential) {
this.potential = potential;
}
}